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Abstract 

Complex ambient systems are composed of many heterogeneous systems; each system interacts with 

its surroundings using collected environmental data from sensors’ readings. Diagnosis for the 

overall system as well as the sub-systems composing it must address many challenges caused by the 

dynamic nature of these systems and the impossibility to pre-define control loops between sensors 

and actuators at design time as they are discovered dynamically at run-time. This paper presents a 

design technique that is based on defining for each component the expected effect — the “physical 

phenomenon” — it is supposed to produce or receive. The proposed approach facilitates the 

comparison of the produced effects in the environment and the actual readings of the sensors, and 

thus simplifies the diagnosis task. To do so, we propose a precise definition of the concept of effect. 

The approach is validated by implementing a simple yet complete example taking place in an 

ambient environment. 

 

 

1. Introduction 
 

Ubiquitous systems are a particular type of interactive systems in which information processing and 

communication capacities have been integrated into everyday objects and activities (ubiquity). 

Users of ubiquitous computing are not necessarily aware that they are so. These systems are usually 

composed of many heterogeneous complex systems. Unlike workstations whose actions only affect 

themselves and their immediate surroundings, ambient systems incorporate devices that enable 

them to act more broadly on their physical environment. These devices are called actuators. 

Moreover, ambient systems are aware of their environment by collecting local data using sensors. 

After processing these data, they may change the conditions of their environment using actuators in 

order to satisfy user’s preferences or to assist him/her in his/her task (ambient intelligence). In this 

context, the system must have the means to check autonomously whether the system actions are 
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done correctly. In software, when calling a procedure, mechanisms such as exceptions and error 

codes allow the caller to decide whether the execution was successful or not. As a matter of fact, 

when the ambient system sends out orders to an actuator, the latter can provide a return code, but 

the information provided by this code reflects only the way the orders are transmitted to the 

actuator, not their actual execution. For instance when the system activates a light bulb, it can 

receive an acknowledgment enabling it to know that the order was successfully transmitted to the 

electrical circuit. However it doesn't know if the light has really been switched on (for instance due 

to a damage to the bulb itself). Even though control theory applied to embedded systems allows one 

to pre-determine closed control loops using ad-hoc sensors, the particularity of ambient systems is 

that physical resources, mainly sensors and actuators, are not necessarily known at design time. In 

fact they are dynamically discovered at run-time, so control loops cannot be pre-determined. 

Therefore the main goal of our work is to provide a dynamic and reliable method for building 

dynamically the equivalent of control loops for such systems, using available sensors at a given 

time, in order to perform an accurate diagnosis at run-time. We propose an approach in which the 

characteristics of actuators and sensors, as well as the effects produced by the actuators and 

captured by the sensors, are precisely described. The concept of effect is central to this approach: 

using this concept, an ambient system is capable of automatically associating actuators and sensors, 

and thus, of deducing the expected measurement provided by a given sensor when a certain action 

is performed by an actuator. The remainder of this paper is organized as follows. Section 2 reviews 

prior studies for performing diagnosis in ambient environments. Section 3 introduces the concept of 

effect. Section 4 explains how this definition is used to model and build an ambient system. Section 

5 presents a complete example demonstrating our approach. 

 

2. Related Work 
 

One of the major challenges studied in previous work is the fact that ubiquitous systems are 

supposed to operate completely in the background in such a way that the users are not supposed to 

notice their existence. This very important characteristic of ubiquitous computing makes fault 

detection and diagnosis a difficult task [1]. Besides, with such requirements, the behavior of an 

ambient environment creates a risk which is that the user may continue to rely on failed services 

without noticing 0. Some ubiquitous computing environments, especially smart homes, also called 

assisted living homes, use an approach that consists in making the diagnosis task user-centered. As 

mentioned earlier, the main purpose of ubiquitous environments is to discreetly satisfy the user's 

preferences. Based on this principle most of the proposed diagnosis techniques start with gathering 

data which are processed to generate a text-based summary [3], used for the diagnosis. The 

generated summary is then made available to human intervention (the user, an expert, a service 

technician, etc.). We note that the user is usually at the center of the diagnosis as the latter depends 

on the user's feedback. Another approach proposed for ambient environment diagnosis is the model-



based diagnosis technique which is based on first-principles reasoning by means of a system 

description that is used to define the behavior of each component within the system and the 

connectivity of these components [4]. With this information, a diagnosis can be made by simulating 

the system’s behavior. In fact the major challenge of this technique is combinatorial explosion 

which makes the approach useless for devices composed of a considerable number of components 

[5]. We can say that generally the approaches proposed in existing work suppose that sensors and 

actuators are somehow directly linked. In other words the model explicitly contains the 

relationships that link actuator actions and sensor states. We claim that building such explicit links 

is poorly adapted to highly dynamic ambient systems. Indeed, as devices are added to and removed 

from an environment at runtime, it is very difficult for the system designer to thoroughly describe 

the system at design time. For these reasons, we introduce the concept of “effect” that will allow 

actuators and sensors to be decoupled in the model, while enabling the system to deduce the links 

between them at runtime. 
 
3. The Concept of “Effect” 
 

The purpose of the concept of effect is to enable the simulation of the physical consequences of an 

action in an ambient environment. In the proposed approach the effect becomes the only link 

between the actuators and the sensors. As a matter of fact, in an ambient environment, actuators, 

when receiving orders sent by the system, emit actions whose actual effects on the surrounding 

environment are only visible to the system through its sensors. We consider these actions from the 

point of view of the physical environment; accordingly they are defined as one or more physical 

phenomenon. The format, the value and the way these actions are perceived by the sensors and 

processed by the system follow the corresponding physical laws. These laws depend on a number of 

well-known physical parameters. In the proposed approach an explicit list of the effects that are 

expected to be observed in the environment must be defined and modeled by the system designer. 

For each declared effect a number of properties are defined too. These properties, which we will 

call effect properties from now on, correspond to the physical parameters defining the physical laws 

mentioned before. If we observe carefully the nature of the data collected by sensors, we conclude 

that these effect properties match exactly what sensors are sensible to. Even though the list of 

properties can be very explicit, it is to be noted that in reality the number and the nature of the 

properties are conditioned by the hardware configuration (the nature of the sensors and their 

precision) and the degree of details wanted. Our motivation for proposing such a definition is to be 

able to decide whether or not an actuator has completed an action successfully, by applying the 

physical rules on the effects produced by actuators on one hand, and on the actual effect properties 

detected by the sensors on the other hand. An important point to note here is that the definition of 

the effect can follow different levels of granularity. For instance the light emitted from a light bulb 

in an ambient environment might be modeled using classical laws of physics for light propagation 



[6], or a very simple rule saying “if a light bulb is on in a room then the light sensors that are in that 

room should detect light”. Likewise an actuator that produces more than one effect can have its 

generated effects defined according to different levels of details. The choice of the latter can 

depend, among other things, on the context of use, for instance assisted living homes for blind 

persons would have a very detailed definition of the model for the propagation of sound waves.  

Moreover, several different devices may contribute to one given effect. Therefore, this effect may 

be defined more than once according to different level of details, depending on the importance of 

the produced effect with respect to each device. For example the heating effect generated by light 

bulbs is not as significant as the heating effect generated by heaters; nevertheless it might be 

important to model the light bulb heating effect in a particular scenario. We can push the model 

further by defining the same effect produced by the same device more than once with different 

levels of details. The diagnosis results from the different levels can be useful for the system’s 

overall diagnosis. This generality and flexibility of the definition allows us to have more or less 

realistic definitions of the physical laws depending on different criteria such as the architecture of 

the system, the diagnosis technique used for the system, how accurate we want the diagnosis to be, 

the desired level of detail we want for the diagnosis, the context of use of the ambient environment, 

etc. Such flexibility is well-suited to the nature of ambient environments. The definition of the 

effects allows us to apply calculations based on pre-defined physical rules in order to calculate the 

expected readings of the sensors. Once the expected results have been determined, the final step 

would be to perform a diagnosis by comparing the actual readings of the sensors with the calculated 

expected readings. It should be noted that it is up to the final designer of the system to define the 

appropriate physical rules and thus decide about the desired level of details of each physical rule 

applicable in the environment. What we propose here is a generic model that is adaptable to 

different levels of granularity. It is also important to note that the physical law defines not only the 

calculation formula but also the way that the physical phenomena interfere with each other. 

 

4. A Meta-Model for Diagnosis 
 
4.1. Supporting Ontology 

 

Section 3 has shown that effects are a solution to avoid any predefined actuator-sensor relations; 

instead an automatic deduction of these relations is made possible. The latter deduction is based on 

physical laws that calculate the expected values for the sensors in order to perform a diagnosis 

process. The manner in which the diagnosis process should be managed must be flexible as it is 

supposed to support centralized as well as distributed diagnosis process, in which case every device 

would have a local diagnosis process. The latter may be a partial diagnosis solution for large 

systems, using local observations [7] as well as an overall diagnosis algorithm. To benefit from 

good extensibility properties and broad tool support, we have used ontologies for defining the meta-



model and the models, namely OWL ontologies [8]. The ontology schema is given in Figure 1. For 

clarity reasons the main branches of the ontology are detailed separately in the next paragraphs. 

 

4.1.1. The Ontology’s Main Branches 

 

- Concept of “effect“ 

 

One of the main objectives of our approach, illustrated by Figure 2, is to eliminate the direct link 

between sensors and actuators. As a matter of fact the possible relationship between an actuator and 

a sensor is indirectly specified through the use of an effect. An effect is characterized by a certain 

number of properties. The definition of the properties is conditioned, on the one hand by the nature 

of the effect, and on the other hand by the desired degree of details. For instance, in a coarse-

grained model the effect of human voice may be characterized by the sound level only, whereas in a 

finer-grained model it may be characterized by its frequency distribution as well. By definition, the 

purpose of an actuator is to produce one or more effects. Likewise, the purpose of a sensor is to 

detect a property of the effect. 

 

 
Figure 1. The ontology schema 

 

Figure 2. Definition of effects in the ontology 

 

- Support for the diagnosis process 

 

We have made the choice to associate to each sensor a diagnosis process node, as shown in Figure 

3. This node is to contain the result of the local diagnosis which is based, in part, on the local 

readings of the corresponding sensor. As explained earlier, this choice brings certain flexibility to 

the diagnosis architecture of the whole system as it leaves the way open for using any kind of 

diagnosis strategy, especially for networked systems. In addition, each diagnosis process deduces its 

diagnosis results also from one or many dependency laws, which represent the “physical” laws 

applicable around the sensor and estimate the expected values for the effect properties read by the 

sensor. The relation between diagnosis process and dependency law is also illustrated in Figure 3. 

 



- The Dependency law 

 

Dependency laws, on which diagnosis processes rely, depend in their turn on mathematical 

formulae. The latter, along with the variables and the operators, based on simple object oriented 

inheritance principles, constitute the computational model [9], as opposed to the physical model 

represented by the dependency laws; Figure 4. The computational model, as its name indicates, 

helps calculating the estimated values of the effect properties that sensors are supposed to read by 

applying the corresponding dependency laws. As mentioned earlier, the computational model may 

also have different possible levels of details, depending on the types of actuators and sensors used 

in a given system, and on the objectives of the system designer. 

 

 
Figure 3. The diagnosis process 

 

Figure 4. Physical model vs computational model 

 

4.1.2. The reasoning engine 

 

So far we have presented a way to model actuators and sensors, as well as a mechanism to deduce 

links between them (effects), but what remains to be seen is the way in which these effective links 

may be deduced, allowing the system to eventually perform a diagnosis. We have chosen to write 

deduction rules in first-order logic, as it is well-supported by OWL off-the-shelf tools such as Jena 

[10]. The generic rule below figures out which is the actuator that generates an effect whose 

parameters are detected by a sensor. Such a rule may attach an error message to the 

“DiagnosisProcess” node. In a syntax inspired by that of Jena, the rule would be: 

 

(?Sensor detects ?EffectProperty) ^ (?Effect hasProperty ?EffectProperty) ^ (?Actuator produces ?Effect) ^ 

(?Sensor performs ?DiagProcess) ^ (?DiagProcess deducesFrom ?DependencyLaw) ^ (?DependencyLaw 

dependsOn ?EffectProperty) ^ (?DiagProcess value “False”) � (?DiagProcess message “Please check the 

”+?Actuator) 

 

This means that: if a sensor detects an effect property, if an effect that is produced by an actuator 

has the same effect property, if the diagnosis process that is performed by that sensor and deduced 

from a dependency law depending on the effect property in question fails, then we generate an error 

message suggesting to check the actuator that generated the effect. 



 
4.2. Proposed Modeling Methodology 

 
In this paper we propose general guidelines for the designer of an ambient system to set up 

diagnosis for this system. A possible output for the proposed technique would be an ontology-

driven application [11]. Thus the related ontology would be considered as the application’s 

architectural artifact [11]. In other words, the ontology would be considered as part of the system’s 

software architecture and it would be used at run-time. In this paper we suggest a modeling 

methodology based on the definition of the concept of effect. For a better understanding of the 

proposed methodology and for clarity reasons we rely on the UML class diagram shown on Figure 

5. The idea of the methodology is to partition the model into three levels of abstraction. Level 0 

would include the general concepts: effect, sensor and actuator. We suppose that everything in an 

ambient environment fits under these three super categories. We can make an analogy here with the 

concept of “Interface” in Object Oriented Programming. The designer intervenes at Level 1 where 

he/she declares entities that inherit from those of Level 0. Level 1 should include any entities that 

the designer estimates might influence the diagnosis results even if, in some cases, they are not 

controlled by the system, such as doors or windows. In that case, to be accurate, it would be 

appropriate to declare two sub-entities of actuator; one would represent controlled actuators and the 

other uncontrolled actuators. The latter entity will be considered as a super class for entities such as 

“window” or “door” if they are not controlled by the system. In Level 2 we find the different 

instances of the abstract entities, declared in Level 1, in a particular ambient environment. 

 

 
Figure 5. UML class diagram for the proposed modeling methodology applied to an example 

 
5. Example and Scenario 
 

To illustrate our effect-based model we present here a simple yet representative example on how the 

modeling process would be like for a simple example of an ambient environment. We suppose that 

we have an environment composed of three sensors (two light sensors and a temperature sensor), 



two actuators (a light bulb and an electric fireplace) and two built-in objects (a door and a window). 

The first step would be to apply the modeling methodology to identify the different entities 

involved in the environment. The generated diagram is presented in Figure 5. The diagram uses 

UML notation for clarification purposes since UML offers a graphical syntax familiar to systems 

designers. From this diagram we can identify the main entities in the environment and the different 

levels of modeling. The next part is a description of the system based on the diagram and the effect-

based model presented in the ontology. As presented previously, Level 0 includes only the concepts 

of Effect, Sensor and Actuator. In Level 1 we have the classes of entities for each of the major 

concepts: LightSensor and HeatSensor for sensors, LightActuator and HeatActuator for actuators, 

PrimaryLightEffect and SecondaryLightEffect which are effects produced by entities of type 

LightActuator, and finally HeatEffect which is an effect produced by entities of type HeatActuator. 

It is to be noted that both primary and secondary light effects possess the effect property 

LightIntensity which is detected by the entity LightSensor. However PrimaryLightEffect has one 

more property which is Distance (the distance between the source and the detector). This difference 

between the two light effects produced will affect the choice of the dependency law to be used. 

Obviously PrimaryLightEffect will use a finer dependency law. As for HeatEffect, it has the effect 

property Temperature which is detected by the entity HeatSensor. In Level 2 we have the instances 

which are the real objects in the environment: Light_Sensor_1 and Light_Sensor_2 instances of 

LightSensor, Temperature_Sensor_1 instance of TemperatureSensor, Light_Bulb_1 instance of 

LightActuator, Electric_Fireplace_1 instance of both HeatActuator and LightActuator, and finally 

Door_1 and Window_1 instances of LightActuator. Using the declarations in Level 1 we can deduce 

that Light_Sensor_1 and Light_Sensor_2 “detects” LightIntensity, Temperature_Sensor_1 “detects” 

Temperature, Light_Bulb_1 “produces” PrimaryLightEffect and SecondaryLightEffect, 

Electric_Fireplace_1 “produces” HeatEffect and SecondaryLightEffect, and Door_1 and Window_1 

“produces” PrimaryLightEffect and SecondaryLightEffect. 

 

For the diagnosis part of this scenario we use the ontology proposed in Figure 1. Each of the sensors 

has an instance of SensorDiagnosisProcess. In our case we would have 3 diagnosis processes: 

Light_Sensor_1_Diag_Process, Light_Sensor_2_Diag_Process, Temperature_Sensor_1_Diag_Process; each 

one deduces diagnosis from one or more DependencyLaw. In our example we estimate that we will 

have 3 types of DependencyLaw: heat propagation, decrease of light intensity and indirect 

illumination or light reflection. In this example we will illustrate numerically only the decrease of 

light intensity. This law is used by both light sensors’ diagnosis processes. It states that the intensity 

of light as a function of the distance from the light source follows an inverse square relationship. 

Reasoning is applied at this point, in order to find out which DependencyLaw is associated with 

which SensorDiagnosisProcess by linking the corresponding sensor to one or more effect 

properties. The latter are what constitute effects; similarly entities referenced by DependencyLaw 

depend on them to make calculations, hence the deduction of the concrete link between an actuator 



and a sensor. Let’s apply this reasoning to Light_Sensor_1, Light_Sensor_2 and Light_Bulb_1. We 

suppose that the latter is a 60 watt light bulb that emits 850 lm (lumen). We suppose also that it is 

located at 2 meters from Light_Sensor_1 and 5 meters from Light_Sensor_2 and that it is turned on. 

It should be noted that for the model to be adapted to the dynamic nature of ambient systems, the 

distance information is to be deduced automatically; this part of the model being not fully 

developed yet, we simply introduce the distance values manually for now. Behind every 

DependencyLaw there is a computational model that calculates values, using a mathematical 

formula, and then affects to each EffectProperty related to the DependencyLaw the estimated value. 

Each diagnosis process compares the value read by the related sensor with the value estimated by 

the DependencyLaw. If the compared values are different then the diagnosis is declared to fail and 

an error message is generated as explained in “Reasoning Engine” section. The computational 

model behind the light intensity decrease dependency law used by both sensors’ diagnosis processes 

should return 212.5 lm for Light_Sensor_1_Diag_Process and 34 lm for Light_Sensor_2_Diag_Process. 

Let’s say that both sensors read the same value 0 lm which means that the room is supposed to still 

be dark, in this case both diagnosis processes return a failed diagnosis state and the global diagnosis 

state should generate the proper error message asking the user to replace or to check the real state of 

the light bulb. The user’s feedback can be added as a statement to the ontology, and can be useful 

for further reasoning about the light bulb. We can imagine a case in which the user’s feedback 

confirms that the light bulb is properly illuminated even though the system says it is not; in that case 

the system deduces that the sensors are not functioning properly. Even though Door_1 and 

Window_1 are not controlled by the system they are considered as actuators, in fact they are 

considered in the diagnosis as anticipation for when the model will be expanded to support 

recovery. For now this special kind of actuators will simply appear in the error messages as a 

correction suggestion to the user. 

 
6. Conclusions and Future Work 
 

In order to improve the diagnosis of ambient systems we have introduced a new idea consisting of 

simulating what happens in reality by applying the appropriate physical rules in ambient 

environments, thanks to the concept of effect. Effects model the relations between sensors and 

actuators, based on physical laws. One of the major contributions of this work is the fact that the ad-

hoc link between Actuators and Sensors is not required to be specified explicitly: actuators are not 

linked to sensors by the designer; the links may be calculated using effects at run-time. A local 

diagnosis process then compares the read value and the estimated value. Our meta-model meets the 

reality and particularities of ambient environments. Those environments are very dynamic and 

unstable in the sense that new entities may be introduced or removed at run-time, which makes their 

design complicated. Our work therefore proposes an original way of performing diagnosis in 

ambient environments. As future work, we envision different improvements to the method exposed 



in this article. For instance, the issue of the possibility of having faulty sensors was explored but 

never really solved. A solution might be to integrate a probabilistic model to our effect-based 

model. Furthermore, the prospect of using different diagnosis techniques to manage distributed 

diagnosis of networked systems was anticipated in the model but it has not been used yet. Besides, 

as stated earlier, the user is the center of an ambient intelligent system, as the main purpose of the 

system is to satisfy his/her preferences. Yet, the user, this fundamental and really complex part of 

the system, is not represented in our proposed model. Indeed, contrary to the system’s behavior 

which is predictable and thus can be easily and usefully modeled, the behavior of the user is 

unpredictable, which makes its modeling intricate. However explicitly modeling user behavior, 

tasks and needs would allow the system to provide useful assistance. Finally real-scale tests in an 

experimental intelligent room will be performed in order to validate the framework. 
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