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Abstract

We present a component-based description language
for heterogeneous systems composed of several data
flow processing components and a unique event-based
controller. Descriptions are used both for generating
and deploying implementation code and for checking
safety properties on the systems. The only constraint
is to specify the controller in a synchronous reactive
language. We propose an analysis tool which trans-
forms temporal logic properties of the system as a
whole into properties on the events of the controller,
and hence into synchronous reactive observers. If
checks succeed, the final system is therefore correct
by construction. When properties cannot be trans-
lated exactly into observers of the control, our tool
is capable of generating approximate observers. In
this case, the results are subject to interpretation,
but can prove useful and help detect defects or even
guarantee the correctness of a system.

1 Introduction

We describe here a method for the design and code
generation of heterogeneous software systems, which
allows the specification of safety properties on the sys-
tem and their formal verification. We distinguish two
aspects in the design of a heterogeneous system: the
data processing operations performed to produce the
outputs from the inputs, and the control of the sys-
tem, which determines the schedule and parameters
of the operations. Data processing can be described
by data-flow models, whereas control is described by
state machines or synchronous languages. Designing
control independently from data processing results in
a separation of concerns, which allows the formal ver-
ification, re-use and independent modification of the
parts of the system.

We propose a modular approach, in which data
processing is modeled by processing components
which communicate through data flows, and control
is modeled by a unique control component whose in-
puts and outputs are pure events. In this context,
an application is described by a network of intercon-
nected components. We do not provide automated
means of generating a controller, but rather tools that



allow a system designer to check the behavior of the
controller he/she has written.

For system designers, meaningful properties are
global properties, that apply to the inputs and out-
puts of the application itself. We consider only
canonical safety properties, a subclass of Linear Tem-
poral Logic (LTL) formulae, and we propose an auto-
matic method which translates these properties into
local properties expressed on the control component.
The latter properties can be automatically trans-
formed into observers written in the same formalism
as used for describing the control component (namely
a synchronous reactive language). In this way, formal
methods can be used to check the control component
directly: what is proved is what gets executed.

The paper is organized as follows. Section 2 pro-
vides a short review of related work, and justifies the
choice of a purely event-driven control. Section 3
introduces ADLV, our Architecture Description Lan-
guage for Verification, which is used for both the de-
scription of the application and of the safety prop-
erties. Then, we explain how safety properties can
be translated, first into intermediate formulae (sec-
tion 4), and finally into observers on the control com-
ponent (section 5). Section 6 gives conclusions and
perspectives for future work.

2 Related Work and Objectives

Embedded systems are almost always heterogeneous
systems. Indeed, they often mix traditional contin-
uous automatic control or signal processing subsys-
tems with digital supervision that switches the sys-
tem among several different states.

Some researchers have provided tools to analyze
the behavior of so-called hybrid systems, physical
systems that mix continuous behaviors and discrete
transitions at some points [20, 27]. Tools also exist to
synthesize hybrid controllers [6]. In this article, we do
not study analysis of physical systems nor synthesis
of hybrid controllers. Rather, we propose methods
for proving properties on a wholly-specified heteroge-
neous system.

In our view, a system is comprised of several pro-
cessing components (e.g. a block for computing

FFTs, an automatic control loop, etc.), and a unique
controller. The languages most commonly used in the
industry generally allow one to design a controller as
a discrete transition system, generally a state ma-
chine. This is the case of Esterel [4], Lustre [13],
Signal [22], StateCharts/SyncCharts [1], Grafcet/Se-
quential Function Chart [9]. These languages are
event-based, but they generally allow operations on
numerical values as source of events. For instance,
if a is a numerical input, then one can specify the
event a < 23. This convenience has two drawbacks.
First, it mixes “pure” control and data operations
inside the controller. Indeed, whereas complex op-
erations such as FFTs are naturally thought of as
separate blocks, simpler operations are more likely
included in the controller. Second, these languages
have formal semantics which allow one to prove prop-
erties of programs by model checking [17, 25]. How-
ever, model checkers have limitations when dealing
with float or even integer valued signals. One possi-
ble approach allows infinite-state transition systems,
and performs abstract interpretation before doing
model-checking [8]. However, we think that explicitly
specifying the transformations on data-flow signals,
through the definition of processing components, will
help designers achieve a clean design, while avoiding
issues.

Therefore, our framework clearly distinguishes two
parts in a system: (1) an operative subsystem, consist-
ing of components that communicate through data
flow and possibly events, (2) control components
whose inputs and outputs are only events. This al-
lows formal verification tools to check properties on
the control component. However, if these properties
were to be specified on controller events, the verifica-
tion framework would be cumbersome to use. Indeed,
the primary vocabulary of the designer consists of the
application inputs and outputs, and possibly some in-
ternal signals, and cannot be restricted to controller
events.

The approach presented here is original in that it
permits the specification of properties on the system
using a vocabulary that is close to the designer’s con-
cerns, for instance “component C is never active when
input E is greater than value V”. These global prop-
erties are then translated into the event-based seman-



tics used by the control component at a local level,
for instance “event Y is never emitted between an
occurrence of X and an occurrence of Z”, using the
description which is also used for generating the im-
plementation. This guarantees the consistency of the
transformation applied to the safety property and of
the way implementation code is generated: this code
is correct by construction. The verification method
thus follows the WYPIWYE (what you prove is what
you execute) principle [4].

We do not intend to produce a new formal verifi-
cation tool, but to design an analysis tool, capable of
transforming global properties expressed on the sys-
tem as a whole into local properties expressed on the
control component. The latter can easily be trans-
lated into observers [15] written in the target lan-
guage. Observers can then be processed by the veri-
fication tools available on the market. In this way, the
actual implementation code is checked, so the WYPI-
WYE paradigm is applied a second time.

Generators have been proposed to translate tem-
poral logic properties expressed on signal values into
run-time monitors [23, 2]. Our framework has the
same expressive power as these, in that it allows
one to reference and compare signal values. How-
ever, whereas these monitors only ensure that prop-
erties are verified on a limited number of finite traces,
model checking allows us to prove the correctness of
a system on all possible behaviors, including finite
and infinite ones.

3 Architecture Description
Language
for Verification

3.1 Description of Embedded Appli-
cations

We introduce here a method for describing embedded
applications as a set of processing components that
are activated and connected at the request of a control
component. This description is used both to gener-
ate the actual implementation of the application and
to transform properties expressed on the application

into properties that can be checked on the control
component. We have designed the ADLV language
(Architecture Description Language for Verification)
which has both an abstract syntax and a textual con-
crete syntax which extends OMG IDL3. ADLV fo-
cuses on the description of component interfaces and
connections between components; it does not intend
to be as general-purpose as AADL [11]. This section
is an informal introduction to ADLV through the ex-
ample of a cruise control system depicted on figure 1.
In this diagram, the following symbols are used for
input and output ports:

event sink data flow input
event source data flow output

An event is a message that bears no value, and
that is either present or absent at any point in time.
A data flow has a numeric or boolean value at each
instant. The semantics of the system is given by the
Kahn process network model of computation [19].

Processing components can either be “black boxes”
described in specific formalisms such as Simulink (e.g.
the Regulator component) or “internal” components
directly described in ADLV (e.g. the 3 leftmost com-
ponents). In the former case, only the interface of
the component is described in ADLV, while inter-
nal components are completely described in ADLV,
and their behavior is known to the ADLV analy-
sis and code generation tools. Internal components
serve as adaptors between components of heteroge-
neous nature: for instance, they can have dataflow
inputs, and generate events based on a condition
given by the designer. For example, the internal com-
ponent BrakesCheck has a boolean data-flow brakes
input, and produces an event each time the value
of brakes changes. It produces brakes pushed when
brakes changes from false to true, and brakes released
for the other transition. This leads to the following
definition for BrakesCheck in ADLV concrete syntax:
internal component BrakesCheck {

sink BoolFlow brakes on;

publishes PureEvent brakes pushed {
when brakes on;

}
publishes PureEvent brakes released {

when ! brakes on;



regul on
regul off

brakes on

current speed

accelerator

throttle

regul on

regul off

brakes pushed

brakes released

speed ok

speed nok

set target

start reg

stop reg

Controller << Esterel >>

brakes on
brakes pushed

brakes released

BrakesCheck << Internal >>

current speed
speed ok

speed nok

SpeedCheck << Internal >>

current speed
set target

target speed

SpeedMem << Internal >>

target speed

current speed

regulated cmd

Regulator << Simulink >>

Figure 1: Component-based cruise control described in ADLV.

}
};

Likewise, SpeedCheck emits a speed ok event when
current speed enters the range of admissible values
for regulation (40..130 km/h), and emits a speed nok
event when it exits this range. Hence the following
definition:
internal component SpeedCheck {

sink FloatFlow current speed;

publishes PureEvent speed ok {
when current speed >= 40

&& current speed <= 130;
}
publishes PureEvent speed nok {

when current speed < 40
| | current speed > 130;

}
};

There is only one control component per applica-
tion (here, the Controller component, which is writ-
ten is Esterel); it is considered as black box that
consumes and produces events. Connections between
components can either be static or dynamic. In the
latter case, an initial configuration is given, that can
change over time.

The behavior of the cruise control is as follows:
the Simulink component calculates a “regulated com-

mand” for the throttle. At startup, the accelerator
pedal is connected to the throttle. If the current
speed is in the range of admissible values, and the
driver presses a “regulator on” button, the output of
the Regulator component is connected to the throttle.
As soon as the driver brakes, the throttle is connected
back to the accelerator. To re-enable the cruise con-
trol, the driver must both stop braking and press the
“regulator on” button. There is therefore a dynamic
connection between the throttle and either the “reg-
ulated command” from the Regulator component or
the accelerator input. It is depicted as a “switch” on
figure 1.

We have implemented a tool that generates the ac-
tual implementation of the system from an ADLV
description [5]. We will not describe this here, but
rather focus on the checking of safety formulae.

3.2 Safety Formulae

3.2.1 Canonical Safety Formulae

Temporal logic is often used to express properties
of reactive systems. In particular, Linear Temporal
Logic (LTL) is widespread and well understood, es-
pecially for the verification of programs [10].



It is often critical to check that some property is
“always true” or “never true”. In LTL, for some
property f , “f is always true” is denoted by �f ,
“f is never true” is denoted by �¬f . If we restrict
f to the class of past formulae, �f is a canonical
safety formula [7]. Such formulae offer good expres-
sive power [21], are simple to use [16, 18] and easy
to translate into synchronous reactive languages [3]
such as Esterel or Lustre.

In our framework, past formulae are built from
classical propositional operators (∨, ∧, →, ¬), past
temporal operators ( S [since], B [back to], �· [al-
ways], ♦· [once], � [previous]), and predicates. The
predicates that system designers can use are given in
table 1.

Type True when...
s event s is present

s op k data flow s satisfies a compari-
son to constant k. op is a com-
parison operator among {<,≤
, =,≥, >}

(in)active(c) component c is (in)active

ci.pj � ck.p` port p` of component ck is con-
nected to port pj of component
ci

true, false boolean literals

Table 1: List of predicates for safety formulae.

All the predicates can be negated, with natu-
ral meaning. For instance, ¬(s < k) = s ≥ k,
¬(active(c)) = inactive(c), etc. These transfor-
mations are purely syntactic rewrite rules; there is
no meaning associated with comparison operators,
and signals or values are merely uninterpreted char-
acter strings. The signals used in the predicates can
belong to the interface of the application, or be in-
ternal signals. Safety formulae are part of the ADLV
descriptions, alongside the description of processing
components and connections.

3.3 Non-Canonical Safety Formulae

Let us consider the following property that must al-
ways be satisfied: when the driver brakes, the reg-
ulator is not connected until the driver presses the
“regulator on” button and he/she releases the brakes.

This property uses a future operator: until. There-
fore, it is not a canonical safety property. However,
it can easily be rewritten in the past tense: since
the brakes were pushed, if the driver has not both
pressed the “on” button and released the brakes, then
the regulator is not connected. Hence the following
ADLV statement (a << b means “output port b is
connected to input port a”):
always {
(!(regul on && !brakes on)) since brakes on =>

!(throttle << regulator.regulated cmd);
} /∗ Statement S1 ∗/

At the moment, the designer has to rewrite safety
formulae that are not in a canonical form. In section 6
we will discuss possible improvements to handle non-
canonical safety formulae.

3.4 Purely Propositional Example

A statement can possibly use propositional operators
only:
never {

set target &&
(current speed < 40 | | current speed > 140);

} /∗ Statement S2 ∗/

The statements S1 and S2 will be used as exam-
ples in the remainder of this paper. never and al-
ways statements being equivalent, we will only con-
sider never statements from this point on, without
loss of generality.

3.5 Checking the Controller against
Safety Formulae

For each safety formula, we must generate an equiva-
lent observer in order to use it to check the controller.
However the safety formula can involve signals that
are not directly connected to the controller. By ana-
lyzing the structure of the application and by looking
into the internal blocks, we are able to build an equiv-
alent temporal formula that only references some of



the controller events. This method is described in
section 4.

We are then able (see section 5) to translate this
formula (called an intermediate formula) into one or
two observers. These are modules written in the same
language as the controller (for instance, Esterel or
Lustre). One can then use language-specific checking
tools in order to prove that the safety properties are
satisfied by the controller.

The steps towards the generation of the observer
are summarized on figure 2.

Application
Description

(ADLV)

Safety
Formula
(ADLV)

Intermediate
formula(e) Observer

Diagnosis

Figure 2: Overview of property verification.

These properties are checked on the synchronous
implementation of the controller, which is destined to
drive the application at run time, thanks to observers
directly generated from the application description
itself. As stated above, the WYPIWYE principle is
effectively applied in these two respects.

4 Interpretation of Temporal
Formulae

4.1 Overview

For each formula in a never statement, the general
idea is to compute a signal in the synchronous lan-
guage, which is emitted at each instant when the for-
mula is satisfied. A special signal failure is emitted
when the top-level formula of a never statement is
satisfied. Model-checking tools will either prove that
failure can never be emitted, or exhibit a counterex-
ample.

The problem is stated as follows: Given f a tempo-
ral logic formula involving application signals, build

a corresponding signal s, based uniquely on the con-
troller’s input and output events, using constructs of
the controller implementation language. We can de-
compose this problem into two sub-problems:

1. transform predicates involving application sig-
nals into predicates involving controller events
only. This section studies this sub-problem,
which represents the major part of our work,

2. generate an observer in the target language, from
a temporal logic formula. This has been proved
to be relatively easy [16, 18]. More details re-
garding our own framework are given in sec-
tion 5.

The first issue boils down to translating predicates:

• event predicates must be transformed into con-
troller event predicates, what can be achieved by
following the connections,

• comparisons involve data flow values. The data
flows are generally inputs of internal compo-
nents that emit events when the comparison be-
comes true or false. Such a predicate is therefore
true between the occurrences of a “start” and a
“stop” event,

• activations and connections are either performed
at startup, or modified at runtime by internal
components. As above, we can identify “start”
and “stop” events for the validity of the predi-
cate.

To define truth values that are true between the
occurrence of two events, we introduce interval pred-
icates, denoted by [u, v). [u, v) is true if u has oc-
curred, but v has not occurred yet. Note that the
truth value of an event predicate s is that of the in-
terval predicate [s, s̄), with s̄ denoting the absence
of the signal s. This way, solving sub-problem #1
amounts to replacing any predicate in the original
formula with interval predicates involving controller
events only. This yields a new temporal logic formula
which is called an intermediate formula. Both types
of formulae share the same propositional and tempo-
ral operators; they differ by the types of acceptable



predicates: those of table 1 for original formulae, in-
tervals for intermediate formulae.

However, it is not always possible to find an in-
termediate formula that is strictly equivalent to the
original formula. Nevertheless, it is sometimes pos-
sible to approximate the original formula by two in-
termediate formulae, one too strict, one too loose,
as will be seen in section 4.3. More precisely, when
a formula cannot be translated into an interval, but
can be “bracketed” by two intervals, the analysis al-
gorithm creates a proto-interval that consists of the
pair of bracketing intervals. As a result, the most
general algorithm doesn’t directly produce interme-
diate formulae built from intervals, but rather formu-
lae built from proto-intervals, that are called proto-
intermediate formulae.

In cases where it is possible to produce an in-
termediate formula equivalent to the original for-
mula, proto-intermediate formulae are simply equal
to the intermediate formulae. Otherwise, proto-
intermediate formulae are the best approximations
for the original formula. More details are given in
section 4.4, including an algorithm to produce one or
two intermediate formulae from a proto-intermediate
formula. In this case, we call these approximate in-
termediate formulae, in contrast to otherwise exact
intermediate formulae. Table 2 gives the definitions
for interval and proto-interval predicates.

Type Meaning
[si, sj) true when event si has occurred, but

event sj has not yet occurred

(AI , AO) approximation of the truth value of a
formula by too strict an interval (AI ,
inner) and too loose an interval (AO,
outer)

Table 2: Predicates for internal use.

4.2 Building Proto-Intermediate For-
mulae

The algorithm for translating an original formula to a
proto-intermediate formula is based on the following
“proto-intermediate formula” pif(f) function:

1. if f is of type (in)active(c), look for activation
conditions of component c. These conditions are
events produced by the controller and processed
by an internal component. Return an interval,
whose bounds are the controller events that ac-
tivate and deactivate component c.

2. if f is a connection predicate, proceed as above:
look for controller events that are processed by
internal components to connect ports, and re-
turn an interval whose bounds are the controller
events that cause the connection and disconnec-
tion.

3. if f is of type signal (s), s may either be one
of the controller ports (let p = s), or s may be
connected to such a port p. If p is found, return
[p, p̄).

4. then, look for f and ¬f in the when clause of the
publishes ... when ... statements1 of the internal
components. If the corresponding internal ports
are connected to the controller, let pf and p¬f

be the controller ports. Then, return [pf , p¬f ).
If only an approximate result is found, store it
in the approx variable, and proceed to the next
step.

5. if f is of type a ? b where ? is a binary operator,
let a′ = pif(a) and b′ = pif(b). If a′ and b′

are defined and are exact intermediate formulae
for a and b, return a′ ? b′. Or else, if approx is
defined, return approx. If approx is not defined,
return a′ ? b′.

6. if f is of type ? a where ? is a unary operator,
let a′ = pif(a). As above, return ? a′ or approx.

7. if nothing has been returned so far, pif fails.

Remark 1 Proto-intermediate formulae only ap-
pear when looking for f in when clauses (step 4).
If this happens, we do not return the intermediate
formula right away, but rather try to give priority to
an exact formula possibly found by decomposing f

1Identification of formulae can be achieved by using a
canonical form, derived from a normal form.



(steps 5 and 6). We return an approximate solution
only as a last resort.

Remark 2 In steps 5 and 6, formulae are decom-
posed following the tree structure resulting from the
way they were written by the user. We do not con-
sider reorganizing the formulae because: 1) it limits
the complexity of the algorithm, 2) safety formulae
and when clauses are written by the same person
(the system designer), thus they are likely to share
common patterns. Therefore preserving the struc-
ture helps identify common sub-formulae.

Example The predicates of statement S1 can be
found directly in when clauses, and translated into
intervals:

• a look at the textual description of component
BrakesCheck shows that brakes on corresponds
to [brakes pushed, brakes released),

• regul on is directly a controller input event, so
it corresponds to [regul on, regul on),

• throttle << regulator.regulated cmd corre-
sponds to [start reg, stop reg) (the dynamic
connection on the right of figure 1 is treated as
an internal component).

This yields IF1, an exact intermediate form:

¬{(¬([regul on, regul on) ∧ [brakes released, brakes pushed)))
S [brakes pushed, brakes released)} → ¬[start reg, stop reg))

4.3 General Case: Dealing With when
Clauses

This section deals with the matching of an original
formula f in when clauses. The match may be exact
as in the example above, but this section gives details
about how approximate matches are found.

Let f be an original formula, and let us suppose
that there are a number of publishes... when... state-
ments, of the form publishes si when ai. The goal
is to find an interval I equivalent to f , i.e. a start

signal, at which f becomes true, and a stop signal, at
which f becomes false. To determine the start sig-
nal, we look for signals si in when statements where
ai = f , ai ⇒ f , or f ⇒ ai

2. The same applies to the
stop signal, with f being replaced with ¬f . From
now on, we only consider the start signal; finding the
stop signal is similar.

Each formula ai is associated to a signal si (which
is emitted when ai becomes true). Let’s call I+ and
I− the start and stop signals of f (thus I = [I+, I−)).

There is a partial order relation ⇐ on the set of
formulae, and an associated equivalence relation =.
By structure morphism, these relations respectively
induce a partial order relation � and an equivalence
relation ↔ on the set of signals. a⇐ b means that a
must be satisfied for b to be satisfied (b ⇒ a). This
means that the event sb associated to b cannot happen
before sa, the event associated to a. Therefore, sb

must happen after sa. The � relation is therefore a
temporal order on the occurrence of signals. sa � sb

means that sa is always emitted before sb. Likewise,
↔ corresponds to the simultaneity of signals. As a
consequence, it is possible to build a Hasse diagram
involving I+ and the signals si that compare to I+

(see figure 3).

I+

s1 �
s2 �

s3

�

s4

�
s5

�
�

s6�
s7

�

s8

�
s9

�

S+
IS+

O

Figure 3: Hasse diagram, with sets S+
I & S+

O .

Among the signals that happen “before” I+, only
the maximum ones, those “closest to I+”, mat-
ter. On the example, these are s1 and s4. These
signals provide the best possible approximation of
I+, while preceding it. Let S+

O be the set of
these signals. Formally, it is defined as: S+

O =
{s ∈ S|s � I+ ∧ ¬ (∃s′ ∈ S, s � s′ � I+)}. Likewise,
let S+

I be the set of minimum elements located after
I+, S−I the set of maximum elements located before

2Determining the implication relationships is straightfor-
ward using the aforementioned canonical forms.



I−, and S−O the set of minimum elements located af-
ter I−. S+

I and S+
O are depicted on figure 3.

Let us define s+
O ∈ S+

O , s+
I ∈ S+

I , s−I ∈ S−I and
s−O ∈ S−O . Relative positions of this signals are shown
on figure 4. This provides us with a “bracketing” of I:
an outer approximate, [s+

O, s−O), and an inner approx-
imate, [s+

I , s−I ). This “bracketing” is valid whatever
the signals s+

O, s+
I , s−I and s−O:{
s+

O � I+ � s+
I

s−I � I− � s−O

s+
O s−O

s+
I s−I I−I+

Figure 4: “Bracketing” of I.

We wish to define the best possible approximation
for I+ and I−. Hence, within leftmost members, we
consider the last signal to occur, and within right-
most members, we consider the first signal to occur.
This enables us to define intervals AI (best inner ap-
proximation) and AO (best outer approximation):

[first(S+
I ), last(S−I ))︸ ︷︷ ︸

AI

⊂ I ⊂ [last(S+
O), first(S−O ))︸ ︷︷ ︸

AO

This finishes the complete description of the step
#4 in the algorithm of section 4.2:

• if there exist signals s+ and s− such that s+ ↔
I+ and s− ↔ I−, then return the interval
[s+, s−),

• or else, try to define intervals AI and/or AO.
Return the pair (AI , AO), which is called a proto-
interval,

• or else, go to step #5.

4.4 Proto-Intermediate Formulae

4.4.1 Definitions

A proto-interval is a pair (AI , AO) of intervals that
constitutes a “bracketing” of the interval I corre-

sponding to a formula f . If AI = AO, it means
that I = AI = AO and this is an exact match (the
set of intervals is trivially embedded into the set of
proto-intervals). From now on we will assume that
AI 6= AO. A proto-intermediate formula is a formula
whose predicates are proto-intervals.

Example In statement S2, the expression
e = current speed < 40 || current speed > 140

cannot be found exactly. However, if we examine the
when clauses of component SpeedCheck, we see that:
1) I+

e ⇒ speed nok, and 2) speed ok⇒ I−e .
The interval [speed nok, speed ok) is thus an outer

interval for e. There is no inner interval for e, so the
proto-intermediate formula for S2 is

PIF2 = set target ∧ (∅, [speed nok, speed ok))
.Intermediate formulae can easily be translated into

observers (see section 5). A proto-interval, as a pair
of intervals, is thus a pair of intermediate formulae
and can therefore be translated into two observers:
one too loose, one too strict. However, a non-trivial
proto-intermediate formula cannot directly be used
as such and needs to be rewritten into a pair of in-
termediate formulae.

4.4.2 Transforming Proto-Intermediate For-
mulae into Pairs of Intermediate For-
mulae

A proto-intermediate formula f ′ is rewritten as
(f ′I , f

′
O), where f ′I is an inner (“strict”) intermedi-

ate formula, and f ′O is an outer (“loose”) interme-
diate formula. We denote this by f ′  (f ′I , f

′
O).

Thus for a proto-interval, we have the trivial rule:
(AI , AO) (AI , AO).

Methodology used Suppose that an original for-
mula f has a proto-intermediate formula f ′ which is
rewritten as (f ′I , f

′
O). Then the order relations on the

start and stop events give:{
f ′O ⇐ f ⇐ f ′I (start event)
¬f ′I ⇐ ¬f ⇐ ¬f ′O (stop event)

Both relations are equivalent, so we can retain only
the first one. Conversely, let f be an original formula.



f ¬f f

f ′I ¬f ′I f ′I

f ′O ¬f ′O f ′O

Figure 5: Structure of the intermediate formulae for
proto-intermediate formula g′ = ¬f ′.

If there are intermediate formulae g and h such that
g ⇐ f ⇐ h, then g and h are respectively inner and
outer intermediate formulae for f . In short, f ′  
(g, h).

Negation Let f ′ be a proto-intermediate formula,
associated to an original formula f , with f ′  
(f ′I , f

′
O). Let g′ = ¬f ′. The situation is depicted

on figure 5.
Formally, one can write f ′I ⇐ f ⇐ f ′O. By taking

the contraposition: ¬f ′O ⇐ ¬f ⇐ ¬f ′I . Hence the
conclusion, that shows that the negation inverts the
inner and outer formulae:

if f ′  (f ′I , f
′
O) then ¬f ′  (¬f ′O,¬f ′I)

Conjunction, disjunction and implication Let
f ′ and g′ be two proto-intermediate formulae, associ-
ated respectively with original formulae f and g. Let
us suppose that f ′  (f ′I , f

′
O) and g′  (g′I , g

′
O).

We have: f ′I ⇐ f ⇐ f ′O and g′I ⇐ g ⇐ g′O. The
relation ⇐ is compatible with logical and3, thus we
have:

f ′I ∧ g′I ⇐ f ∧ g ⇐ f ′O ∧ g′O

Finally: f ′∧g′  (f ′I ∧g′I , f
′
O∧g′O). Likewise,⇐ is

compatible with ∨, thus f ′ ∨ g′  (f ′I ∨ g′I , f
′
O ∨ g′O).

Implication is dealt with by rewriting f ′ → g′ as
¬f ′ ∨ g′. By applying the rules seen above:

f ′ → g′  (f ′O → g′I , f
′
I → g′O)

Temporal operators We still are under the as-
sumption that f ′I ⇐ f ⇐ f ′O and g′I ⇐ g ⇐ g′O.

3The formula [(a→ b) ∧ (c→ d)]→ [(a ∧ c)→ (b ∧ d)] is a
tautology, which can easily be verified.

Let Ψ be a unary temporal operator. Manna et
al [24] state that temporal operators are monotonic,
hence the relation: Ψ(f ′I) ⇐ Ψ(f) ⇐ Ψ(f ′O). We
thus conclude: Ψ(f ′) (Ψ(f ′I), Ψ(f ′O)).

The same applies to binary temporal operators. If
Ψ is a binary temporal operator, we have likewise:
Ψ(f ′, g′) (Ψ(f ′I , g

′
I), Ψ(f ′O, g′O)).

Conclusion Apart from negation and implication,
almost all operators permit a “natural” transforma-
tion of proto-intermediate formulae into pairs of in-
termediate formulae. When doing so, there are two
cases:

1. the proto-intermediate formula contains exact
proto-intervals only. In this case, we finally get
only one intermediate formula, which is exact
too,

2. the proto-intermediate formula contains at least
an approximate proto-interval. In this case, we
finally get one inner and/or one outer interme-
diate formula(e).

Example The proto-intermediate formula PIF2 is
naturally rewritten as only an outer intermediate for-
mula IF2 = set target ∧ [speed nok, speed ok).

5 From Intermediate Formulae
to Observers

As stated above, an intermediate formula is a logic
formula that must never be true. Therefore, we have
to translate it into an observer in the target language.
The observer runs in parallel with the controller and
emits an error signal in the states where the formula
is true. One can then use a verification tool either
to prove that the error signal can never be emitted
(and hence that the safety properties are satisfied), or
conversely, to exhibit a counterexample. The verifica-
tion tool is generally provided with the target devel-
opment environment; examples include checkblif for
Esterel and lesar for Lustre.

When the analysis of safety formulae produces
exact observers, the results of the checking tools



directly correspond to the satisfaction or non-
satisfaction of the formulae. However, when the anal-
ysis produces approximate observers, the results are
subject to interpretation, and the analysis tool must
state it clearly.

Indeed, an observer based on an inner intermedi-
ate formula can miss some failure cases because it
is too loose. However, if the checking tool finds a
counterexample, it really corresponds to a case of
non-satisfaction of the safety formulae. The check-
ing toolchain thus performs an under-verification of
the system.

Conversely, an observer based on an outer interme-
diate formula doesn’t miss any real failure case, but
it is prone to detecting false positives, because it is
too strict. The checking toolchain thus performs an
over-verification of the system.

Example An observer based on IF2 is too strict
compared to the statement S2. This statement en-
sures that the event set target never occurs when
the speed is below 40 or above 140 km/h. However,
an observer based on IF2 will ensure that set target
never occurs when the speed is below 40 or above
130 km/h. Thus it may detect “counterexamples”
for speeds in the interval 130-140 km/h that are not
contradictory with the safety property S2.

Generation of Observers Generating observers
from intermediate formulae is straightforward, and
has already been studied both for Esterel [18] and
Lustre [14]. Each formula and sub-formula f can
be translated into some module, node or expression
which emits a signal Sf whenever f is true. For in-
stance in Esterel, if modules C a and C b calculate
respectively a and b, the following process calculates
a S b (denoted by a signal Se):

run C a | | run C b | |
[

every immediate S b do
do

sustain S e
watching immediate [not S a]

end every
]

6 Conclusions and Perspectives

The analysis method presented here allows the de-
signer to express properties on a system in a nat-
ural way, using temporal logic to specify relations
among internal or external signals. These properties
can then be automatically translated into temporal
logic properties on the controller events. From this,
observers can be generated in the language used for
specifying the controller, and used to prove the prop-
erties by model-checking.

In cases in which specified properties do not exactly
match controller events, approximate observers can
be generated. Although their results are subject to
interpretation, they can help system designers detect
certain defects and validate part of the behavior of
their systems.

We have implemented the analysis tool in Java.
This tool reads the textual ADLV description of an
application, analyses the safety formulae and the be-
havior of the internal components, and builds proto-
intermediate formulae and intermediate formulae. It
can then produce observers for the controller in var-
ious languages thanks to a modular structure which
requires the definition of just one class for each
supported language. This class implements a visi-
tor pattern [12] that traverses intermediate formu-
lae and generates programs in the target language.
We provide visitors for Esterel and Lustre, but sup-
port for other languages can be added very easily.
This tool is available at http://wwwdi.supelec.fr/
logiciels/adlv/.

Perspectives include handling a wider range of sys-
tem descriptions. For instance, the current method
cannot deal with the cases in which connections
between processing components and the controller
change at run-time. This extension makes the analy-
sis more complex since the mapping between formu-
lae and controller signals becomes dynamic.

The set of safety properties currently accepted by
our tool is limited to canonical safety formulae. How-
ever, recent work has shown that non-canonical safety
formulae can be translated into Büchi automata,
i.e. deterministic observers [26]. We could certainly
leverage these results to extend the range of accept-
able safety formulae.
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