
163

A Component-Based Platform for Accessing
Context in Ubiquitous Computing Applications

Chistophe Jacquet, Yolaine Bourda and Yacine Bellik

Author preprint. Publication details:
Journal of Ubiquitous Computing and Intelligence, 2007,

Vol. 1, No. 2. Pages 163-173. American Scientific Publishers.

Abstract— Based upon a conceptual model for ubiquitous
computing systems, this article presents a component-based
platform for building context-aware applications. This platform
introduces a high-level service to abstract context and to allow the
rapid construction of dynamically reconfigurable applications.
Moreover, the inputs and outputs of context components benefit
from a strong typing, which permits design-time checks that
can detect specification mistakes. At the end of the article, we
introduce an implementation for this platform.

Index Terms— Ambient Intelligence, Context-Aware Comput-
ing, Ubiquitous Computing, Sensor Fusion, Middleware.

I. INTRODUCTION

PEOPLE interact with “classical” computer systems while
sitting at their desks. In contrast, ubiquitous computing

systems are meant to be used anywhere, and in a context-
aware fashion. To this end, these systems must be capable of
(1) capturing their context of use, and (2) performing actions
on their environment.

In this article, we mainly focus on the design of a platform
to capture context. With “context”, we mean what Anind K.
Dey describes in his PhD dissertation [1]: “any information
that can be used to characterize the situation of an entity”,
where an entity is either a person, a place, or an object.

At first sight, it is very complicated to build a context-aware
system because one has to deal with low-level communication
protocols with sensors as well as higher-level algorithms to
infer information on context.

Indeed, a context-aware system has to capture information
about its environment through physical sensors (temperature,
light, localization, etc.), and then aggregate these basic data to
infer higher-level context information.

This is the reason why several platforms for capturing
context have already been proposed. Their primary goal is to
ease the tasks of creating, maintaining and extending context-
aware systems [2]. They try to handle themselves the most
tedious tasks, so as to aid application designers.

However, existing platforms lack (1) advanced methods to
access high-level context, and (2) static consistency checks
between the inputs and outputs of their building blocks.

In consequence, it is not possible to use context without
being strongly tied to one given infrastructure for context
capture. In general, changing something in this infrastruc-
ture means stopping, and possibly recompiling, applications.

Moreover, without static type checking, it is possible to chain
components inconsistently, thus leading to runtime bugs hard
to investigate.

For these reasons, our platform proposal introduces two
original aspects:
• the notion of object hive, an abstraction for accessing

context, which proposes a weak coupling between context
capture and context use, as well as the possibility to
reconfigure applications in a dynamic fashion,

• a strong typing for all communications between software
components.

Section II summarizes what existing context-aware plat-
forms have already proposed. Section III introduces our
conceptual model and the vocabulary in use in this paper.
Section IV comprehensively describes our platform and its
original aspects. More precisely, Section V deals with the
notion of object hive. Finally, Section VI presents a test
implementation for our platform.

II. REVIEW OF EXISTING FRAMEWORKS FOR
CONTEXT-AWARE COMPUTING

In this section, we briefly present the main frameworks that
have been proposed to support the building of context-aware
applications.

Some systems are focused on presenting (and possibly
exchanging) information in a context-aware fashion. For in-
stance, the Stick-e notes system [3] can associate multimedia
objects to different kinds of context (but mainly localization
context). In the example given by the authors, context capture
is ad-hoc: geographical coordinates are simply acquired by
GPS1. The system then allows the display of context-dependent
information items.

In the CoolTown system [4], real world objects are identified
by URLs2, which allows objects to exchange information. In
this system too, context capture components that are capable
of retrieving URLs for physical objects are ad-hoc and hard-
wired. Moreover, this system proposes only a coarse-grained
context-capture, and does not allow to retrieve precise context
properties.

Conversely, in Bill Schilit’s thesis, defended in 1995 [5],
device agents can collect precise information about the status
of common office appliances. However, each device agent
is specifically designed to match the characteristics of the
appliance, the sensors involved, and the ways to access them.

1Global Positioning System
2Uniform Resource Locator



164

World Model

Physical world

Virtual world

printer-d2.18

 name

 num-printed-pages

 num-remaining-pages

 color-capable = false

office-210

 name

 temperature

physical incarnation

virtual incarnation

Fig. 1. Relationships between objects of the world and objects of the model.

A decisive step was taken forward by Anind K. Dey [6]
with the introduction of the context toolkit, whose goal is to
ease the design and implementation of context-aware systems.
Dey’s contribution is built around the concept of context
widget. In the same way as widgets hide intricate interaction
details from graphical user interface designers, context widgets
embed either physical sensors or context transformation and
aggregation operations. In these cases, context widgets are
respectively called interpretors and aggregators. Context is
aggregated by a chain (or a network) of widgets. Applications
are directly connected to the outputs of the chain (or network).
In consequence, context widgets are assembled specifically for
a given application.

The contextor abstraction [7] introduced by Rey et al. refines
and complements the notion of context widget. This system
eases the identification of context components (called contex-
tors) needed by applications. However, once useful contextors
have been identified, the application is directly connected to a
network of contextors. Other platforms have similar proposals,
as far as the position of applications is concerned, for instance
in the Sentient Object Model [8] proposed by Biegel and
Cahill.

We think that context capture infrastructures should not be
specific to a given application. Instead, it should be possible
to specify context capture in a given environment in a generic
way. It would allow:
• any application to query and use the context,
• the designer to change the context capture infrastructure

at runtime, without needing to recompile or even stop the
existing applications.

The existing platforms do not completely address these
issues, so we designed the object hive abstraction to fill this
gap. Section V explains how.

III. CONCEPTUAL MODEL

To begin with, we define the concepts underlying our model
that is based on two fundamental notions : the model, where
abstract representations of objects live, and the world (both

physical and virtual), where incarnations of model objects live
(see fig. 1).

A. World

We call world the set of all the objects in interaction with
the user. They can be both physical and virtual. It is therefore
possible to distinguish between the physical world on the one
hand, and the virtual world on the other hand (fig. 1).

The term physical world refers to all the objects that are
governed by physical laws. It is the world human beings live
in. Conversely, the term virtual world refers to environments
composed of imaginary computer-generated objects that the
user can interact with through virtual and mixed reality appli-
cations.

In augmented reality systems, interactions happen mainly
in the physical world whose physical objects are augmented
by virtual properties. While these systems are quite popular,
others have proposed augmented virtuality systems, where
interactions happen in a computer-generated world that is
augmented by elements taken from the physical world [9].

In fact, Milgram has shown [10] that it is very difficult
to precisely define the concepts of reality, augmented reality,
augmented virtuality and virtual reality. Instead, he introduces
a continuum that ranges from pure reality (the physical world)
to pure virtuality (virtual worlds): the reality-virtuality contin-
uum (fig. 2).

Real
Environment

Virtual
Environment

Mixed Reality

Augmented
Reality

Augmented
Virtuality

Fig. 2. The reality-virtuality continuum ranges from pure reality to pure
virtuality.

When thinking of virtual objects, one often imagines only
images displayed on head-mounted displays, caves and so on.
However, virtual worlds can possibly rely heavily on other
senses, such as audio and tactile sensations.



165

Example — A secretary typesets a letter with a popular
word processor. The physical parts of the computer (keyboard,
screen, mouse, etc.) are located in the physical world, as
well as the secretary herself. Conversely, the letter and the
word processor program (as well as the “companion”, a small
character appearing on the screen and supposed to help the
user with her tasks) are located in the virtual world.

However, all these objects belong to the world as a whole.
All of them can be sensitively perceived by people.

B. Model and Model Objects

We call model the abstract representation of the world
(physical world as well as virtual world). The objects of the
world are described in the model by a set of characteristics
called attributes.

Each object of the model describes (at least) one object
of the world (fig. 1). Since it is impossible to describe every
single detail of the world, the model should then be considered
a partial representation. Indeed, it is likely that implementors
would decide to model only the characteristics of the world
relevant to the target applications.

It is not possible to automatically check that the model really
represents the world that it is supposed to describe. This is
the ambient environment designer’s task to check this kind of
consistency. No mechanism can automatically detect possible
errors.

Example — In the physical world, a printer is located
in room D2.18. It is represented in the model by the ob-
ject printer-d2.18. This object has got an attribute called
printed-pages that represents the total count of pages
printed by the real-world printer located in room D2.18. The
ambient environment designer must ensure that this attribute
is updated according to its semantics. For instance, if one
assigned another printer’s page counter to it, no formal
consistency rule would be broken. Thus, only the environment
designer can perform consistency checks because they are not
feasible automatically.

There are three types of attributes :
• static attributes: values are affected to such attributes

once and for all for a given object, and they do not change
in its lifetime. These attributes can either be defined for
a class as a whole or on an individual basis,

• state variables: they represent the dynamic state of the
world. They are permanently updated,

• calculated attributes: a sub-category of state variables,
they are dynamically deduced from the values of other
attributes. Their value is updated each time that one of
the attributes they depend on changes.

Example — The attribute color-capable of the printer
called printer-d2.18 is set to false for its whole lifetime.
Likewise, its name attribute is set to "Printer located in
room D2.18". A context component regularly queries the
physical printer through SNMP3 requests so as to retrieve
the number of printed pages since its toner cartridge was
last replaced, and updates the printed-pages attribute ac-
cordingly. The remaining-pages attribute is defined to be

3Simple Network Management Protocol.

equal to toner-cartridge-capacity − printed-pages.
Therefore, it will be updated each time the printed-pages
attribute is modified.

C. Incarnations

We call incarnation an object in the physical world or in
the virtual world that corresponds to an object of the model. In
the first case, we call it a physical incarnation. In the second
case, we call it a virtual incarnation (fig. 1).

Example — An incarnation of the printer-d2.18 object
(which is located in the model) is the (physical) printer located
in room D2.18. The latter is an object from the physical world.

Up to now, we have implicitly assumed that an object of
the model had one and only one incarnation (either physical
or virtual). Actually, it is possible for a model object to have
several incarnations:

1) in pure reality, when not interacting with computers,
every object has exactly one incarnation, located in the
physical world,

2) in mixed reality, or simply when interacting with com-
puter tools, some objects of the model can have several
incarnations, either physical or virtual,

3) in pure virtuality, the objects of the model have one or
several virtual incarnations, and no physical incarnation.

IV. A PLATFORM FOR AMBIENT COMPUTING

A. Overview

The previous section has shown that objects of the world
(either the physical world or a virtual world) can be described
by a model. The objects of the world are incarnations of the
objects that populate the model. Let us now show how this
vision can lead to the design of a platform architecture for
ambient-computing systems.

In this paper, we only deal with context capture : we explain
to build and update a model that corresponds to the world. In
practice, one would conversely need to perform actions on the
world. This topic (sometimes called actuation) is not tackled
here, and may be the subject of future research work. The
general layout of this platform is shown on figure 3.

The platform is divided in four layers:
1) Sensors. Sensors are the interface between the world

(either physical or virtual) and the platform. They per-
manently track changes in the world in order to update
the model accordingly.

2) Context aggregation. It is often necessary to combine
information from several sensors, so as to deduce rel-
evant and useful context information. That is what we
call context aggregation.

3) Assignation. Information from the preceding layers
characterize objects of the model. That is why we assign
such information to the attributes of the objects of the
model.

4) Object hive. Model objects are gathered in the platform
in a repository that we call an object hive (see section V).

On figure 3, sensors and aggregation components are des-
ignated by the generic term ambient component. They share



166

Sensors

office210

 temperature

 numberOfPeople
printer-d2.18

 printed-pages

 remaining-pages

Context
aggregation
(fusion)

Change > 1KEvery change
Assignation

Object hive

Aggregation
components

Fig. 3. General layout of the context capture platform for ubiquitous
computing applications.

many characteristics with Anind K. Dey’s context widgets [1],
[11] and Gaetan Rey’s contextors. The task of these com-
ponents is to capture information in the world and perform
transformations on contextual information.

B. Ambient Components

1) Introduction: an ambient component is a software com-
ponent that behaves in a relatively autonomous fashion and
has got inputs and outputs (fig. 4).

Ambient
Component

Input Output

Fig. 4. An ambient component.

For instance, sensors are particular ambient components that
have no input and only outputs. They are abstract counterparts
of the physical sensors located in the physical world, or
information sources located in a virtual world.

More generally, ambient components’ outputs are activated
or altered in the following two cases:
• when an input changes. In response to this change, the

ambient component performs an action, so as to update its
internal state as well as its output values. In consequence,
the values of some outputs may be modified,

• when an internal event happens inside the component, for
instance a timeout, or, in the case of a sensor, a change
in the world.

Example — The output of a low-pass filter component will
change every time its input will change. Conversely, we can
imagine a clock component that will output an event every
second. In this case, the component has no input. The cause
of output events is totally internal to the component. Likewise,
the output of a thermometer component embedding a “real”

temperature sensor will change depending on the current room
temperature. From the platform’s point of view, this cause is
considered to be internal to the thermometer component since
it has no input.

Ambient components can be interconnected (inside the
aggregation layer or the context capture layer, see fig. 3): the
output of one component (called producer component) is then
connected to the input of another component (called consumer
component). One given output can be connected to an arbitrary
number of distinct inputs. However, one given input can be
connected to at most one output of another context component.

Indeed, when producing information, it is straightforward to
distribute it to an arbitrary number of consumers. Conversely,
it is very difficult to fuse information from several producers
to deduce one unique input. It requires (possibly complex)
processing that is specific to the information involved. That is
why an input can be connected to one producer only. However,
it is possible that this producer is in fact a fusion component,
able to fuse information from several upstream4 components,
each one being connected to one of its own inputs (fig. 5).

Component

Component
performing
Fusion by
Complementarity

a b c

Component

a b c

Impossible Correct solution

Fig. 5. Since one input can be connected to only one output, we must resort
to fusion components.

So as to ensure consistency of data exchanged among
components, inputs and outputs are typed. Thus, to be able
to connect two ambient components, the type of the upstream
component’s output must be compatible with the type of the
downstream component’s input. This rule allows the detection
of trivial error cases, but does not allow for the detection of
semantic mismatches that are more complicated to detect.

However, one can wonder if such a strong type system does
not unnecessarily increase the number of components needed
to build a system: at first sight, every kind of component would
need to exist for every input type / output type pair. This would
of course be counter-productive – if not impossible. To avoid
such a situation, we introduce two kinds of polymorphism (see
the next two subsections).

Example — On an input supposed to be fed with the
acceleration due to gravity (g, measured in m · s−2 [meters
per second per second]), it is not possible to connect the
output of a temperature sensor (measured in K [kelvins]).
However, it is possible to connect by mistake the output of
a vehicle’s acceleration sensor to it, because this quantity is
an acceleration too, measured in m · s−2.

4The terms upstream and downstream must be understood here in the
context of information flow: information is transferred from an upstream
component to a downstream component.



167

In this example, we have informally shown a first category
of typing: typing measured quantities with units from the
international system of units (SI). Actually, we propose two
categories of inputs/outputs: value inputs/outputs, and event
inputs/outputs.

2) First category of input/outputs: value inputs/outputs:
value inputs/outputs can carry two kinds of values:
• abstract values (for instance, user identifiers). They be-

long to classical computer types: integers, floats, charac-
ter strings, structures, etc.,

• physical quantities (for instance, a temperature, or an
acceleration). In this case, we will associate a unit (taken
from the international system of units) to inputs and
outputs (for example, m · s−1 [meters per second], K
[kelvins], etc.)

A value output always has a value. For example, let us
consider an abstraction of a physical sensor, for instance a
temperature sensor. This sensor permanently measures the cur-
rent temperature, so it has an output called temperature. The
value of this output can be read at any moment. A consumer
component connected to this output will have several means
of retrieving information:
• probing the current output value at given moments, for

instance on initialization, or at regular intervals,
• subscribing to the producer, and being notified when

the quantity fulfills a given condition. For instance: “the
absolute temperature change since the last notification is
higher than 1 K”, “the temperature has just risen above
273 K”, etc.,

• subscribing to the producer and being notified at a given
sampling frequency. For instance, a given component can
ask to be notified two or three times per second.

To use the same components with different input/output
types, we introduce parametric polymorphism (also known as
genericity in object-oriented languages), as in ML [12]. Let
us see how this works on an example. A maximum detector
can have an input of polymorphic type α, and an output of
polymorphic type α−maximum. So, this component can be
connected to any value output, which makes it universal, while
ensuring strict type-checking. This component can therefore be
used to detect temperature maxima as well as maxima of any
other physical quantity.

3) Second category of inputs/outputs: event inputs/outputs:
event inputs/outputs have different semantics. They have no
associated value, so one cannot query them at will. Conversely,
they punctually send messages to the consumers connected
downstream. These messages are called events. So, the only
means for a consumer to connect to an event output is to
subscribe to this output. This way, the consumer component
tells the producer that it is interested in the events it produces
and wishes to receive them until further notice.

Each event type has got a name that is unique throughout
the system. For instance, a crossing detector (such as a light
barrier) sends an event called crossing-detected each time
someone passes by.

Event types can be classified in a hierarchy, where all events
are descendants of a common ancestor, called generic-event

for instance. This way, an input of one component can be
connected to an event output of type T1 of another component
if and only if:
• it is an event input (then, let T2 be its event type),
• T1 is a subtype of T2, ie. an event of type T1 can be

considered as an event of type T2
5.

This way, we introduce here a kind of type polymorphism
(as in object-oriented programming). Indeed, to be able to
handle events of different types, a component just has to be
able to handle events of a common super-type, i.e. a common
ancestor type. The event types can then be classified in a
hierarchy (fig. 6).

Example — The event type crossing-detected described
above can have two subtypes, fast-crossing-detected
and slow-crossing-detected (fig. 6). A component that
takes in input crossing-detected events will also accept
fast-crossing-detected and slow-crossing-detected
events.

generic-event

crossing-detected

fast-crossing-

detected

slow-crossing-

detected

door-opening

Fig. 6. Event type hierarchy. The arrows mean “is a sub-type of”.

Example — We can imagine a generic event counter, that
would be able to count all occurrences of every possible type
of events. To this end, we only need to create a component
that has an output of type generic-event. Then, it will be
possible to connect it to any kind of event output.

4) Discussion: after studying this example, one can won-
der if making a distinction between event and value in-
put/outputs really makes sense. Indeed, why not replace event
input/outputs with counters (or even boolean values) that
would be incremented (or inverted in the case of boolean
values) each time the corresponding event occurs? Event inputs
would then simply subscribe to changes of these outputs.

Example — This way, a crossing detector would provide
an output value alternatively equal to true and false. Each
time someone would cross the barrier, the boolean value would
be inverted. To be notified of crossings, a component would
simply need to subscribe to changes of this boolean value.

This solution can seem to be attractive because it suppresses
the distinction between value and event input/outputs. How-
ever, it suffers from two major drawbacks:

1) this way, the semantics of inputs and outputs are weaker:
it is not possible to perform consistency checks between
event input and outputs. In particular, one cannot use
sub-typing polymorphism that we have yet shown to be
useful. Moreover, outputs would not necessarily have
a meaning. For instance, in the previous example, the
boolean value has no meaning per se: only its changes
are meaningful,

5This corresponds to casting to a super-class in object-oriented languages.



168

2) it does not allow events to hold information. However,
the STEAM6 architecture [13] shows that it is quite
natural to define attributes for events, so that they can
be parameterized and carry information.

Example — It can be necessary to measure the durations
of the crossings of the light barrier described in previous
examples. A crossing duration must be associated to each
detected crossing. To this end, it is therefore natural to define
an event type called measured-crossing, that has an at-
tribute called crossing-duration, whose type is a physical
quantity measured in seconds. This way, crossing events can
be parameterized.

Resorting to events, and to parameterized events in partic-
ular, can offer a clean solution to the issue tackled by this
example. Without the notion of event, it would have been
possible to find a compromise solution, but this solution would
have been semantically obfuscating. In addition, it would not
have been possible to perform fine-grained consistency checks
on inputs and outputs.

For these reasons, we think that having two kinds of
inputs and outputs, namely event and value input/outputs,
makes the model elegant and clean, and eases the component
specification process very flexible.

C. Context Aggregation

1) Introduction: the role of aggregation components is to
transform raw data acquired by sensors into relevant high-
level information about the context of use of the system.
As described in [7], this transformation can be performed in
several steps. Indeed, several layers of aggregation components
can transform information step by step.

It is interesting to draw a taxonomy of the different kinds of
aggregation components. In [7], Rey et al. propose a taxonomy
of contextors, but it is limited to a flat list of six classes.
We think it can be valuable to structure such a taxonomy
in a hierarchic fashion. To name classes in our taxonomy,
we partially use the same vocabulary as used by the CARE7

properties [14] and in the related ICARE8 platform [15].
In this section, we consider ambient components from the

point of view of only one of their outputs, which amounts to
dealing with ambient components with only one output. This
assumption can be made without loss of generality, because
a component with n outputs can be replaced with n different
components with one output each and all the same inputs as
the original component (fig. 7).

First, we distinguish between components with one input
and components with several inputs. In the former case, we
say that they are conversion components; in the latter case, we
say that they are fusion components.

2) Conversion Components: a conversion component has
got only one input. From values or events in input, it provides
other values or events on its output. That is why we say that
it performs a conversion.

6Scalable Timed Events And Mobility
7Complementarity, Assignation, Redundancy, Equivalence
8Interaction-CARE

Component C

S1

S2

S3

E1

E2

Component C1

Component C3

Component C2

E1 E2
S1

S2

S3

Fig. 7. Equivalence between one component with n outputs and n
components with one output each.

Example — Imagine a component that applies a low-pass
filter on its input. It gets values as input, i.e. a signal f(t),
and provides other values in output. More precisely, its output
is a signal equal to 1

T

∫ t

t−T
f(u)du. The input and the output

are of the same nature: they are value input/outputs.
Example — Similarly, we can imagine a component that

performs a conversion from one event type to another. For
instance, one may want to convert from crossing-detected
events to person-enters events if a light barrier is located
at the entrance door of a room and therefore detects people
coming in.

Example — Imagine a component that detects maxima
on its input. It receives values in input but provides events
in output: each times it detects a maximum, it sends a
maximum-detected event. This component’s input and output
have different natures.

Example — Imagine a component that counts incom-
ing events. Thus, its input is an event input, of type
generic-event. Each time an event arrives, the component
increments a counter, whose value is provided in output.
Thus, the component’s output is a value output. Here too, the
component’s input and output have different natures.

As we see on the above examples, all combinations of
input and output natures are possible. The role of conversion
components is precisely to perform conversions between all
the information types handled by the system.

3) Fusion Components: a fusion component combines sev-
eral information sources in input, and merges them to produce
a unique output. There are two cases, (1) when inputs provide
different kinds of information, and (2) when inputs are meant
to provide similar information.

(1) — When its inputs provide different kinds of informa-
tion, an ambient component deduces different new informa-
tion. In this case, it is called a complementarity component,
because it combines its inputs in a complementary way to
produce its output. The component performs processing very
specific both to its inputs and to the expected result. It is
therefore very unlikely to be able to design a generic algorithm
capable of fusing arbitrary data. It means that there cannot be
a generic fusion component, but rather, a multitude of highly



169

specific fusion components.
Example — Suppose that a system is designed to write the

transcripts of meetings. A speech recognition subsystem can
provide the raw text of discussions going on, and a video
identification subsystem can identify the current speaker. A
specially designed complementarity component can take in
input information from these two subsystems, and provide the
complete transcripts of meetings, attributing every statement
to the right person.

(2) — When the inputs of one component are meant to pro-
vide similar information, we call it an equivalence component.
For instance, a component can take in input information from
three different temperature probes. Several kinds of actions
can be performed:
• redundancy: in this case, only the inputs that effectively

provide values are taken into account, and a “poll” is
taken among them. For instance, in the case of three
temperature sensors, one can take the median value
among the three values available. Then, if two sensors
out of three provide correct information, the redundancy
component provides a correct result, even if the third
component provides no or incorrect information. This
method is known in the field of system safety as TMR9.
In this case, it is possible to imagine generic redundancy
components, that work on arbitrary data and implement
generic redundancy techniques.

• quality enhancement: redundancy components only com-
pensate for upstream components’ failures. One can
imagine more complex processing, that would improve
the quality of incoming similar information. For instance,
by combining information provided by three noisy tem-
perature sensors, it must be possible to reduce the noise
in output.

4) Summary of Aggregation Operations: in this section, we
have seen some classes of context aggregation components.
They are summarized on figure 8.

aggregation

fusion

equivalence complementarity

conversion

redundancy quality
enhancement

Fig. 8. Classes of context aggregation components.

Among these classes, only fusion can possibly be designed
to be generic. As for other aggregation techniques, algorithms
are very specific:
• to the inputs and outputs of aggregation components,
• and especially, to the aggregation technique that one

given component implements.

9Triple Modular Redundancy

In our taxonomy, we use notions of complementarity, re-
dundancy, equivalence as in the work of Coutaz et al. [14],
but we have not so far introduced a notion of assignation, as in
their work. We introduce such a concept, but we consider that
it is not a fusion operation. Rather, it enables us to establish
a correspondence between an output of a context component
to an object attribute in the model. This process is discussed
in the next session.

V. OBJECT HIVE

A. Hive and Assignation

When introducing the platform, we have seen that model
objects are stored in an object hive. The hive is itself an
ambient component, that holds a description of every object of
interest. Ambient computing applications can subscribe to the
hive so as to be notified about changes in high level context.
Thus, they receive notifications when model objects’ attributes
are modified.

Example — an application can subscribe to the
people-count attribute of the object office-210 (fig. 3) so
as to be kept informed when people enter or leave this office.
This is a request on high-level contextual information.

It seems that the use of information held in the hive is not
problem in itself. However, maintaining the hive in sync with
the world is a much more complex problem.

Therefore, an update process needs to be performed per-
manently. This can be done quite simply, in connecting the
attributes (state variables) of hive objects to the outputs of
aggregation components. This connection is called assigna-
tion: when the designer of an ambient computing system
decides that an attribute is meant to receive information from
a given component’s output, he or she somehow assigns these
information to the attribute.

To some extend, the attributes of hive objects can be
considered as consumer components (fig. 3). In consequence,
an attribute can only be assigned a value output, because an
attribute must have a value at any moment. It would have no
meaning to connect it to an event output because an event
happens only at one point in time.

However, we have seen before that attributes have types,
exactly in the same way as value outputs have types. As a
result, assignation operations must enforce type compatibility,
as when connecting one ambient component to one other. An
attribute can only be connected to a value output of the same
type.

As seen before, a consumer connected to a value output
must subscribe to this output so as to be kept informed
when the value changes and meets a given condition. Thus,
attributes too must give a condition when subscribing to in-
formation providers. These conditions are given when creating
the assignation, and are called the assignation conditions. For
instance, it is possible to subscribe to every change, or only
to changes of a minimum amplitude (see the assignation layer
on figure 3).

Example — The output of the redundancy component
described in section IV, and that combines the outputs of three
temperature probes by performing TMR can be assigned to the



170

temperature attribute of the office-210 object located in
the hive.

B. Importance of the Hive

As stated in introduction, the hive does not only provide a
means to name context attributes within an object model, but
it also allows to separate two different processes:

• on the one hand, context capture, and low-level context
processing to deduce high-level context. Upstream from
the hive, chains of ambient components perform context
aggregation at various levels,

• on the other hand, access to the context by applications
located downstream.

The hive introduces a weak coupling between context
capture and use, which allows a dynamic reconfiguration of
systems, without having to recompile, or even stop, applica-
tions.

Without the hive, applications would be directly linked
with component chains. In consequence, when modifying the
component infrastructure (for instance, when reconfiguring the
system), applications would need to be modified too.

Example — An application running in a lab a few kilo-
meters off Orly airport in France needs to know the exterior
temperature. At first, there is no temperature probe available.
So people decide to retrieve the data through the network,
using METAR10 information of the Orly airport. Subsequently,
a temperature sensor is installed outside of the lab, which will
provide more relevant (because more local) information than
Orly airport’s.

Case 1, without hive: in the beginning, the application had
subscribed to a METAR gateway component. After the installa-
tion of the exterior probe, the corresponding source code was
replaced by code subscribing to the component embedding the
probe. After re-compilation, the application could be started
again, and has provided more precise information ever since.

Case 2, with hive: in the beginning, the output of
the METAR gateway component was assigned to the
exterior-temperature attribute of the object representing
the laboratory. After the installation of the exterior probe,
the corresponding component was simply assigned to the
exterior-temperature attribute. The application, located
on the other side of the hive, was not even stopped. It went on
running and using data from the hive without being bothered
by the change, but benefiting from the new sensor’s greater
accuracy as soon as it was installed.

This way, the source code of applications holds no direct
reference to sensors. All the dependencies can be stated in a
declarative fashion, and can be modified at runtime, which
allows a dynamic reconfiguration of applications.

Moreover, the capture and context aggregation layers can
be built independently from the possible applications. Appli-
cations can be connected only later, without modifying the
context acquisition architecture.

10METeorological Aerodrome Routine Weather Report

VI. IMPLEMENTATION

A. Technological Solutions

In this section, we present implementation choices for the
conceptual platform introduced in this paper. The main goals
of this implementation are the following:
• the system is distributed across a network; the network

is transparent for designers of ambient computing com-
ponents and applications,

• the system is based on simple and open protocols.
From the description of the model, we deduce that an

ambient computing system complying with our platform is
composed of several ambient components. Therefore, our
proposal is to distribute these ambient components across the
computers of a network. Each computer hosts a server, whose
task is to enable communication between its own components
and other components, either local ones or remote ones.

To support communication between components, it seems
reasonable to exchange fragments of RDF11 graphs. Indeed,
RDF is the new standard for the description of semantic infor-
mation. In addition, vocabulary description functionalities can
be added to RDF thanks to related languages such as OWL12.
This way, it should be possible to describe vocabularies shared
by components in a standard manner. For instance, the data
type hierarchy could be modeled using OWL.

RDF is a conceptual model, and it has got several repre-
sentation formats. However, the representation format called
RDF/XML13 seems to be the easiest to use and the most
popular, so we have chosen to use it. In addition, it is well
suited for transmission of data over HTTP14: this way, server
can simply be web services. We have chosen to use lightweight
web services implemented using the XML-RPC15 protocol,
known to be very simple. However, it would be possible to
use more complete (yet more complex) web service standards
such as SOAP16.

B. Components and Component Identification

As we have shown before, servers are meant to host compo-
nents and enable communication between them. In particular,
the object hive can be considered as one of these components.
Therefore, it is hosted on one of the servers of the system,
exactly in the same way as any other component is hosted on
one server.

Besides, it is useful to have a list of all available components
at one’s disposal, in particular at design time. That is why
every server has a particular component called registry,
capable of providing the list of all components available
locally on this server. Registries could even talk with each
other so as to build the list of all components available on the
whole network, and not only locally [16]. Thus, the general
architecture of our implementation looks like the example of
figure 9.

11Resource Description Framework
12Web Ontology Language
13RDF over eXtensible Markup Language
14HyperText Transfer Protocol
15XML-Remote Procedure Call
16Simple Object Access Protocol



171

http://192.168.0.1:1234

http://192.168.2.54:2345
thermometer-01

thermometer-02

registry

counter-45

hive

registry

network

Fig. 9. Example of deployment of an ambient computing system. Every
server holds a registry. The object hive is located on one of the servers
(here on 192.168.2.54).

We associate a URI17 to every component, composed of its
server’s physical address (actually, the server’s own URI) and
of the component’s local name within its server. This way, any
ambient component can be addressed by its URI, in the same
way as every object in CoolTown [4] is identified by its URL.

Example — The thermometer-02 component, located on
the server identified by the URI http://192.168.0.1:1234,
is itself identified by the following URI: http://192.168.-
0.1:1234/thermometer-02.

Every component has therefore a unique name, its URI. This
is necessary when using RDF because all RDF objects (called
resources in the dedicated vocabulary) must be identified by
URIs. In our system indeed, URIs are both logical identifiers
(with respect to RDF) and physical identifiers, enabling access
to platform components through the layers of a network.

C. Usage Example

Let us consider an example, where two sensors are available:
a temperature probe, and a counter that counts the number
of printed pages on a printer. The hive contains two objects,
representing the current place, and the printer. Assignation can
be performed at runtime thanks to a graphical editor shown
on figure 10. Sensors are on the left; hive objects are on the
right.

Fig. 10. Graphical assignation at runtime.

On the screen-shot, the designer has already assigned the
output of the temperature probe to the temperature attribute
of the currentPlace object in the hive. In consequence, the
measured temperature is displayed next to the temperature

17Uniform Resource Identifier

attribute as soon as a value has been received (here: 296.7
Kelvins). At the bottom, the designer is currently making
a connection between the output of the printer counter and,
presumably, the printed-pages of the HP Printer object.
This operation is performed dynamically at runtime.

It is possible to modify assignations without being obliged
to stop running applications: reconfiguration is graphical,
declarative and dynamic. Moreover, when creating a connec-
tion from an output, the user of the graphical tool (i.e. the ap-
plication designer) gets a visual feedback only when the mouse
cursor hovers a compatible input. Indeed, the system performs
a type checking and only proposes possible connection, as
does the ICON system for interaction customization [17].

VII. CONCLUSIONS AND PERSPECTIVES

In this article, we have first presented a conceptual model
of ambient computing systems. We have then proposed a
component-based platform for building these systems, that
matches the conceptual model.

Our platform is original because:
1) it features a strong typing of messages exchanged be-

tween ambient components,
2) it introduces the concept of object hive that is a high-

level service to access context information, while allow-
ing to dynamically reconfigure applications.

We have implemented a base version of the platform de-
scribed in this paper using Java. It has already allowed us to
try building systems and reconfiguring them dynamically.

Our short term research directions are to handle dynamic
context (for instance, allowing objects of interest to change
as somebody moves), a better formalization of the model and
data types, as well as a more detailed semantic description
of components. Later on, we will explore the possibility of
handling context history and component synchronization, as it
is proposed in some platforms such as the Context Toolkit [6].

REFERENCES

[1] A. K. Dey and G. D. Abowd, “Providing architectural support for build-
ing context-aware applications,” Ph.D. dissertation, Georgia Institute of
Technology, 2000.

[2] O. Riva, “A conceptual model for Structuring Context-Aware Appli-
cations,” in Fourth Berkeley – Helsinki Ph.D. Student Workshop on
Telecommunication Software Architectures, June 2004.

[3] J. Pascoe, “The stick-e note architecture: extending the interface beyond
the user,” in IUI ’97: Proceedings of the 2nd international conference
on Intelligent user interfaces. ACM Press, 1997, pp. 261–264.

[4] T. Kindberg and J. Barton, “A Web-based nomadic computing system,”
Computer Networks (Amsterdam, Netherlands: 1999), vol. 35, no. 4, pp.
443–456, 2001.

[5] B. Schilit, “System Architecture for Context-Aware Mobile Computing,”
Ph.D. dissertation, Columbia University, 1995.

[6] A. K. Dey, D. Salber, and G. D. Abowd, “A Conceptual Framework
and a Toolkit for Supporting the Rapid Prototyping of Context-Aware
Applications,” Human-Computer Interaction, vol. 16, no. 2-4, pp. 97–
166, 2001.

[7] G. Rey and J. Coutaz, “Foundations for a theory of contextors,” in
Computer-Aided Design of User Interfaces III. Kluwer Academic
Publishing, 2002, pp. 13–32.

[8] G. Biegel and V. Cahill, “A Framework for Developing Mobile, Context-
aware Applications,” in Proceedings of PerCom 2004. IEEE Computer
Society, Mar. 2004, pp. 361–365.

[9] L. Nigay, E. Dubois, and J. Troccaz, “Compatibility and continuity in
augmented reality systems,” in I3 Spring Days Workshop, Continuity in
Future Computing Systems, Porto, Portugal, Apr. 2001.



172

[10] P. Milgram, H. Takemura, A. Utsumi, and F. Kishino, “Augmented
Reality: A Class of Displays on the Reality-Virtuality Continuum,” SPIE,
vol. 2351, pp. 282–292, 1994.

[11] A. K. Dey, “Understanding and using context,” Personal Ubiquitous
Computing, vol. 5, no. 1, pp. 4–7, 2001.

[12] A. W. Appel and D. B. MacQueen, “Standard ML of New Jersey,”
in Proceedings of the 3rd Int’l Symposium on Programming Language
Implementation and Logic Programming, no. 528. Springer, 1991, pp.
1–13. [Online]. Available: citeseer.csail.mit.edu/appel91standard.html

[13] R. Meier and V. Cahill, “Exploiting Proximity in Event-Based Mid-
dleware for Collaborative Mobile Applications,” in Proceedings of the
4th IFIP International Conference on Distributed Applications and
Interoperable Systems (DAIS’03). Springer-Verlag, Nov. 2003, pp. 285–
296.

[14] J. Coutaz, L. Nigay, D. Salber, A. Blandford, J. May, and R. M. Young,
“Four easy pieces for assessing the usability of multimodal interaction:
the CARE properties,” in Proceedings of INTERACT’95: Fifth IFIP
Conference on Human-Computer Interaction, 1995, pp. 115–120.

[15] J. Bouchet and L. Nigay, “Icare: a component-based approach for the
design and development of multimodal interfaces,” in CHI ’04: Extended
abstracts of the 2004 conference on Human factors and computing
systems. ACM Press, 2004, pp. 1325–1328.

[16] C. Bettstetter and C. Renner, “A comparison of service discovery
protocols and implementation of the service location protocol,” in Proc.
EUNICE Open European Summer School, Twente, Netherlands, Sept.
2000.

[17] P. Dragicevic and J.-D. Fekete, “Input Device Selection and Interaction
Configuration with ICON,” in Proceedings of IHM-HCI, 2001, pp. 543–
448.


