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Abstract. We introduce an interaction scenario in which users of public
places can see relevant information items on public displays as they move.
Public displays can dynamically collaborate and group with each other
so as to minimize information clutter and redundancy. We analyse the
usability constraints of this scenario in terms of information layout on the
screens. This allows us to introduce a decentralized architecture in which
information screens as well as users are modeled by software agents. We
then present a simulator that implements this system.

1 Introduction

When people find themselves in unknown environments such as train stations,
airports, shopping malls, etc., they often have difficulties obtaining information
that they need. Indeed, public information screens show information for every-
body: as a result, they are often cluttered by too many items. One given person
is usually interested in only one item, so seeking it among a vast quantity of
irrelevant items is sometimes long and tiresome.

To improve the situation, we aim at designing an ubiquitous information
system that can use multiple output devices to give personalized information
to mobile users. This way, information screens placed at random in an airport
would provide passengers nearby with information about their flights. To reduce
clutter, they would display information relevant to these passengers only.

However, if many people gather in front of a screen, they still will have to seek
through a possibly long list of items to find relevant information. One possible
solution would be to bring a second screen next to the first one to extend screen
real estate. But in the absence of cooperation among the screens, the second
one will merely copy the contents of the first one, both screens remaining very
cluttered. The solution lies in the judicious distribution of content among the
screens (see fig. 1).

In this article, we introduce an agent architecture in which neighboring out-
put devices can cooperate to reduce clutter, without having prior knowledge of
each other. Thus, no manual configuration is ever necessary, and in particular
it is possible to move output devices at run time without changing the software
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Fig. 1. Two screens, (a) only neighbors, merely duplicating content, and (b) cooperat-
ing with each other.

setup. First, we present research work related to these topics. Then, we formally
introduce the problem, and draw a list of usability constraints for a cooperative
display system. This allows us to propose a solution based on an agent algorithm
distributed among output devices and users. The algorithm needs no centralized
process: agents cooperate with each other at a local level to build a solution.
We then present an implementation and a simulator that allow us to test this
algorithm. Finally, we introduce perspectives for future work.

2 Related Work

Several systems have been designed to give contextual information to users as
they move around. For instance, CoolTown [1] shows web pages to people,
depending on their location. Usually, contextual information is given to users
through small handheld devices: for example, Cyberguide [2], a tour guide, was
based on Apple’s Newton personal digital assistant (PDA). Indeed, most ex-
periments in context-aware computing are based on portable devices that give
people information about their environment [3].

However, some ubiquitous computing [4] applications no longer require that
users carry PDAs: instead, public displays are used, for example the Gossip
Wall [5]. In these systems, public displays can play several roles: providing public
information when no-one is at proximity, and providing private information when
someone engages in explicit interaction, which raises privacy concerns [6].

Though our system uses public displays, it does not provide personal in-
formation: actually, it provides public information relevant to people located at
proximity. The originality of our system lies in the fact that public displays have
not a priori knowledge of their conditions of operation: they can be placed any-
where without prior configuration, giving relevant information to people nearby,
and collaborating with each other in order to improve user experience.

3 Problem Statement

For the sake of simplicity, we assume that output devices are screen displays,
but this restriction could easily be lifted. We suppose that each user wishes to
obtain a given information item called her semantic unit (s.u.), for instance her
boarding gate. We call load of a screen the number of s.u.’s it displays.



We introduce a notion of proximity (also called closeness). A user is said to
be close to a screen if he can see its contents. Therefore, this definition includes
distance as well as orientation conditions. For instance, if a user turns his back
to a monitor while talking in his cell phone, displaying information for her would
be totally irrelevant, even if he is at a very short distance of the screen.

In introduction, we have seen that in our system, a user close to (at least)
one display must be provided with his s.u. of interest. This is what we call the
completeness constraint. We have also seen that information must be optimally
distributed among screens. To do so, screen load must be minimal so as to
reduce clutter (display surface optimization constraint). If we consider these
two constraints only, the problem would boil down to resolving a distributed
constraint system (first criterion) while minimizing the load parameter (second
criterion). The problem could thus be seen as an instance of dcop (Distributed
Constraint Optimization Problem); several algorithms exist to solve a dcop [7].

However, they are designed to find a solution all at once. In contrast, our
problem is built step by step from an initial situation. Indeed, we can assume
that at the beginning no user is close to a screen. Then, two kinds of events may
occur: 1) a user comes close to a screen; 2) a user goes away from a screen. This
way, any situation can be constructed by a sequence of events number 1 and
number 2. If we assume that we have a suitable solution at one given moment,
and if we know how to construct a new suitable solution after an event number
1 or 2 occurs, then we are able to solve the problem at any moment (recursion
principle): an incremental algorithm would be highly efficient in this situation.

Optimizing the display surface is an important goal, but it may lead to
obtaining unusable systems. Indeed, if a system tries to absolutely avoid clutter,
and so always reorganizes screen layout to be optimal, users might end up seeing
their s.u.’s leaping from one screen to another every time another user moves.
They would then waste their time chasing their information items just to read
them, which is worse than having to find an item in a cluttered screen.

Instead, information display should remain pretty much stable upon event
occurrence so as not to confuse users. Indeed, if someone does not move, then
they may be reading their s.u., so they expect it to remain where it is, not
suddenly vanishing to reappear somewhere else. Conversely, when people move,
they are generally not reading screens at the same time, so they do not mind if
information items are migrated to a new place.

For all this, we take three constraints in consideration.
Constraint C1 (completeness). When a user is close to a number of

displays, his s.u. must be provided by (at least) one of these devices.
Constraint C2 (stability). A user’s s.u. must not move from one display

to another, unless the user herself has moved.
Constraint C3 (display surface optimization). To prevent devices from

being overloaded, s.u. duplication must be avoided whenever possible. This
means that the sum of device loads must be minimal.

For usability reasons, we consider that C1 is stronger than C2, which in turn
is stronger than C3. For instance, let us suppose that three displays show three



s.u.’s for three users (each display shows a different s.u.). Then, if the leftmost
user leaves, and a new user arrives on the right, the s.u.’s will not be shifted
leftwards. This breaks the surface optimization constraint, but we consider it less
important than preserving display stability and not disturbing users. However, if
at some point the rightmost screen becomes saturated, then s.u.’s will be shifted,
so as to ensure completeness, considered to be more important than stability.

4 Solution

In this section, we introduce an algorithm to solve the problem of information
display, while satisfying the above constraints. This algorithm is distributed
among screens and users, each of them being represented by a software agent.

4.1 Mathematical Formalization

We introduce three costs, the static cost of a screen layout, the dynamic cost of
the action of adding a s.u. to a screen, and the migration cost of moving a s.u.
from one screen to another.

Let c̃ be a function over R+, strictly convex and strictly increasing (we will
see the reason for this). c̃(`) represents the static cost of a screen layout of load
`. Thus, for a screen s with load `s, we define c(s) to be c̃(`s). c(s) is called the
static cost of the given screen s with its current layout.

Let us suppose that we want to add δ s.u.’s (δ 6= 0) to a given screen s.
The dynamic cost of the operation, written d(s, δ), is defined to be: d(s, δ) =
c(s)after operation − c(s)before operation = c̃(`s + δ)− c̃(`s).

Note that the dynamic cost increases as `s increases, because c̃ is strictly
increasing and strictly convex. Thus, δ being given, if `2 > `1 then c̃(`2 + δ) −
c̃(`2) > c̃(`1 + δ)− c̃(`1). With this definition of a dynamic cost, we convey the
idea that the more items are displayed on a screen, the more costly it is to add
an incremental item. Indeed, if there is one item (or even no item) on a screen,
adding an item should not increase the time needed to find one’s s.u. But if a
screen is already overloaded, finding a new item among the multitude will be
very long and tiresome.

For instance, let us assume that on a given system, c̃ is defined by c̃(x) = x2

for two screens, called a and b. Note that this choice for c̃ is totally arbitrary: in
practice, c̃ must be chosen for every screen so as to match the screen’s proneness
to become overloaded. If screen a currently displays 2 s.u.’s, then c(a) = 22 = 4;
if screen b currently displays 4 s.u.’s, then c(b) = 42 = 16. If we want to add
one s.u. to these screens, what are the associated dynamic costs? d(a, 1) =
(2 + 1)2 − 22 = 9 − 4 = 5; likewise, d(b, 1) = (4 + 1)2 − 42 = 25 − 16 = 9. So
if we have the choice, we will then choose to display the s.u. on screen a, which
seems to be reasonable. Note that here, both screens share the same static cost
function, but in practice each display can define its own static cost function.

We also introduce migration costs. A migration cost is taken into account
when a s.u. u is moved from one display to another one. Each user Ui interested in
the given s.u. contributes a partial migration cost m(Ui, u). The total migration
cost is the sum of all partial costs contributed by each user: m(u) =

∑
i m(Ui, u).



4.2 Agent-Based Architecture

Of course, it would have been possible to build a solution around a centralized
architecture. However, we think that this has a number of shortcomings, namely
fragility (if the central server fails, every display fails) and rigidity (one cannot
move the displays at will). In contrast, we wish to be able to move displays,
bring new ones in case of an event, etc., all this without having to reconfigure
anything. Displays have to adapt to the changes themselves, without needing
human intervention.

Our implementation is based on software agents that model physical entities:
screens are modeled by display agents; users are modeled by user agents. We
assume that each agent knows which agents are nearby, and can communicate
with them. These assumptions are quite realistic. Proximity of users can for
instance be detected by an RFID reader located on a screen, provided that users
carry RFID tags sticked to their tickets3. As for ubiquitous communications,
they are now commonplace thanks to wireless networks.

The agents are reactive; they stay in an idle state most of the time, and react
to two kinds of events: the appearance or disappearance of an agent at proximity,
or the reception of a network message from an agent (which is not necessarily
at proximity). In section 4.3, we will see some examples of such messages.

4.3 Algorithm

It is now possible to describe the general behavior of the algorithm. First, note
that every user agent references a main screen, i.e. a screen where its s.u. is
displayed. On startup, all main screens are undefined.

The general layout of the algorithm is as follows: when a user agent either
comes close to (i) or goes away from (ii) a screen, it ponders on doing some
operations (described below). So it sends evaluation requests to neighboring dis-
play agents, to know the costs of these operations. Display agents answer the
requests (iii, iv) and remember the evaluated operations. The user agent has
then the choice between either committing or canceling each of the previously
evaluated operations. In practice, the agent commits the operation with the best
cost, and cancels all the others.

[i] When a user agent with s.u. u comes close to a screen s:

– if its main screen is already defined, it sends a migration-evaluation(s)
request to its main screen. If the result (dynamic cost) of the request is
negative the user agent commits it, otherwise it cancels it. This way, a user
walking along a row of screens will have her s.u. “follow” her on the screens,

– if not, it sends a display-evaluation(u) request to s, and systematically
commits it (to satisfy constraint C1, completeness). The s.u. u is sent to the
display agent through the network (serialized object).

3 In this case, only monitors detect the closeness of users. However, the relationship
can be made symmetric if a display agent which detects a user agent at proximity
systematically sends a notification to it.



[ii] When a user agents with s.u. u goes away from its main screen, it first
sends a going-away notification to its main screen, and then:

– if some other screens are nearby, it sends a display-evaluation(u) request
to each of them, and chooses the one with the lowest dynamic cost as its
main screen (constraint C3, display surface optimization). It then sends a
commit message to this one, and cancel messages to the others,

– if not, its main screen is set as undefined.

[iii] When a display agent receives a display-evaluation(u) request:

– if there is still room for s.u. u, it adds it to its display list: when constraint
C1 (completeness) is satisfiable, the screen tries to satisfy C2 (stability),

– otherwise, it tries to move one of its other s.u.’s to another screen. In practice,
for each displayed s.u. v, its sends recursively a display-evaluation(v) to
each screen seen by every user agent ai interested in v. The cost of one
possible migration (if the corresponding recursive call does not fail), is the
cost returned by the call (d), plus the associated migration cost, i.e., d +∑

i m(ai, v). If some of the recursive calls do not fail, the display agent
chooses the least costly, commits it, and cancels the others. Otherwise, the
call itself fails. If C2 (stability) is not satisfiable, the screen still tries to
enforce constraint C1 (completeness), but while doing so, it still optimizes
constraint C3 (display surface optimization). Rule C1 is broken only if all
neighboring screens have no space left.

[iv] When a display agent receives a migration-evaluation(s) request to
migrate a s.u. u:

– if more than one user agents are interested in u, the call fails,
– otherwise, the display agent sends to s a display-evaluation(u) request,

and calls the associated cost d1. It evaluates the “cost” of suppressing u from
its display layout. This cost, negative, is called d2. It calculates the associated
migration cost, called m. Then, it returns d1 + d2 + m. The migration is
considered useful if this quantity is negative.

This is the basic behavior of the algorithm. The other operations, such as
commits and cancels, are defined in a quite straightforward manner.

5 Implementation and First Results

The algorithm, as well as a graphical simulator (fig. 2) have been implemented.
On the figure, users are called H0, H1 and H2. Their s.u.’s are respectively A, B
and C. There are two screens, called S0 and S1. They can each display at most
two s.u.’s. The matrix of 2×3 “boxes” shows proximity relationships: if a user is
not close to a screen, the box is empty. If a screen is a user’s main screen, there
is an “M” in the box. If a screen is close to a user, but it is not his main screen,
there is a “c” in the box.
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Fig. 2. The simulator introduces a GUI to manipulate proximity relationships.

On figure 2a, H0 and H1 are close to screen S0, and S0 is their main screen.
Thus, S0 displays s.u.’s A and B. H0 is also close to screen S1, but it is not his main
screen. Then user H2 comes close to screen S0. To satisfy C1 (completeness), S0
should display the s.u. C, but it can at most display two s.u.’s. So S0 chooses to
break rule C2 (stability) in favor of C1, and migrates A to screen S1 (fig. 2b).

The tests performed with this implementation were satisfying. Next, we plan
to implement the system in real scale, so as to assess its practical usability.

The system can be used to provide information in an airport or train station,
but also for instance to display examination results. In this case, people generally
have to find their names in very long lists, which is very tedious. The task would
be much easier if only the results of people located at proximity were displayed.

6 Future Work

In this paper, all information output devices were screens, thus favoring the vi-
sual modality. However, we are currently finalizing a generalization of the frame-
work presented here to multimodal output devices, handling for instance speech
output as well as text output. In this case, users have preferences not only about
their s.u.’s, but also about their input modalities. For instance, blind users re-
quire information kiosks to provide them with audio information.

Moreover, within a given modality, people can express preferences about the
attributes of output modalities. For instance, short-sighted people can indicate a
minimum size for text to be rendered; people with hearing problems can indicate
a minimum sound level for speech output. In short, the attributes are used when
instantiating [8] semantic units. Note that this extension will have repercussions
on cost calculations, since, for example, screen real estate depends on the size
used to render s.u.’s textually.

On a given screen, it will be necessary to sort the various s.u.’s displayed.
This could be done at random, but we think that a level of priority could be
given to each s.u. This would for instance allow higher-priority s.u.’s (e.g. flights
which are about to depart shortly, or information about lost children) to appear
first. Similarly, there could be priorities among users (e.g. handicapped people,



premium subscribers would be groups of higher priority). Therefore, s.u.’s pri-
ority levels would be altered by users’ own priorities.

As seen above, priorities will determine the layout of items on a screen.
Moreover, when there are too many s.u.’s so that they cannot fit all on the
screens, priorities could help choose which ones are displayed.

In this paper, proximity was binary : agents are either close to each other,
or away from each other. Actually, it is possible to define several degrees of
proximity, or even a measure of distance. These degrees or distances could be
used as parameters of the aforementioned instantiation process. For instance,
text displayed on a screen could be bigger when people are farther away.

We plan to do real-scale experiments shortly, so the agents in the simulator
already rely on Java RMI, so they will be easily deployable on a network. We
also plan to test different proximity sensors that can be used to fulfill our needs.

7 Conclusion

In this paper, we have presented a novel mobile interaction scenario: as users are
being given personalized information on public displays as they move, displays
dynamically cooperate to reduce clutter and increase usability. We have analyzed
the diverse constraints of this scenario, which has led us to propose a solution
based on a decentralized multi-agent architecture.

This architecture appears to be efficient in simulation. The next step will be
a real-scale implementation that will allow field trials with users in context.
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