2013 IEEE 10th International Conference on Ubiquitous Intelligence & Computing and 2013 IEEE 10th International Conference
on Autonomic & Trusted Computing

A Run Time Executable Task Model For Ambient
Intelligent Environments

Asma Gharsellaoui,Yacine Bellik

AMI Group, LIMSI-CNRS, Paris-South University
Bat 508, Plateau du Moulon, B.P, 133,
91403 Orsay Cedex, France
asma.gharsellaoui@limsi.fr
yacine.bellik@limsi.fr

Abstract—EXxisting task models are static and used only at
design time. The information contained in the model is taken into
account only when designing the application and will no longer
be changed. In this paper we propose to use the task model at
runtime, in order to track user actions, verify that he/she has not
made any errors while accomplishing his/her tasks and to give
help when asked for. In particular, we present a task model
specific to the interactions with an ambient environment and we
extend the notion of static task models to allow its dynamic
update at run time. Our extension consists in giving runtime task
states suitable with information received from the environment.
Our second contribution is a monitoring and assistance system
based on our dynamic task model. We present a simulation of
our application based on a software prototype. This application
shows how the interactions with the task model at runtime allow
us to produce a dynamic and context aware system dedicated to
the help of the user to do his/her daily tasks.

Keywords—executable task model; user-centered systems; user
tasks monitoring and assistance; Ambient intelligent environments;
proactive system;

L INTRODUCTION

The emergence of new technologies has profoundly
affected everyday life. Ambient environments strive to support
users through their embedded intelligent objects [1] and to
satisfy their needs based on their preferences and habits. To
deal with these sophisticated mediums and to realize correctly
their daily tasks, users are in need of supervision and
assistance. Supervising the user tasks is to see what they are
doing in order to be able to help them making decisions when
needed. Task assistance consists in advising users about which
action to undertake and providing direct support to them.

In this context our work proposes a novel monitoring and
assistance system based on an adapted task modeling
approach. Section II summarizes the task modeling
requirements in an Aml environment and reviews the existing
assistance solutions based on task models. Our main
contribution lies in Sections III and VI that respectively
introduce our proposal for a task model adapted to assistance
in ambient setting, and contain the specification of the
monitoring algorithm. Section V presents our simulator
through an example scenario. Section VII gives conclusions

978-1-4799-2481-3/13 $31.00 © 2013 IEEE
DOI 10.1109/UIC-ATC.2013.55

691

Christophe Jacquet

Department of Computer Science,
SUPELEC Systems Sciences,
3 rue Joliot-Curie
91192 Gif-sur-Yvette Cedex, France
Christophe.Jacquet@supelec. fr

about our monitoring and assistance system and directions for
future work.

II. AMBIENT INTELLIGENCE AND TASK MODELING

A. Ambient Intelligence

An Ambient Intelligent (Aml) environment is defined as
an intelligent, digital environment that is sensitive and
responsive to the presence of people. An ambient system can
act through its embedded actuators or acquire information
from its environment sensors or also interact with the user [3].
Sensors may provide clues about the behavior of people
(position, orientation, displacement...) that could then be
exploited to ensure the proper conduct of tasks performed by
the user and to offer assistance when needed.

B. Requirement of task modeling in Ambient Intelligent
Environments

The purpose of task modeling is to build a model which
precisely describes the relationships between the various tasks
[4]. A task model describes the intended activities to be
performed in order to reach user goals [5] and the different
ways to accomplish them [6].

In a previous work [7], we have conducted a study to
identify the requirements of task modeling in Ambient
Intelligent environments. The first constraint is that the task
model should include a way of labeling tasks with spatial
constraints and devices manipulated to accomplish the tasks.
Second we have addressed the level of granularity of the task
model and we have proposed to stop the decomposition at the
level where system services are invoked except in the case of
user tasks which do not rely on software services, but on
human actions only.

The main characteristic of a task model adapted to ambient
environment is that it should be dynamic model. Indeed we
need a model updated at run-time in order to respond to the
continuous changes of the context.

C. Models and use at runtime

A large number of task models have been developed,
especially in the context of GUIs: HTA [§8,9,10], GTA
[8,11,CTT [12], UAN [13], TKS [14], DIANE+ [15,14,8],
TOOD [8,16]. We found that none of the cited task models

IEEE
computer
psoaety

could be used for modelling tasks in ambient environment. For
instance, none of them has a specific notation for device- or
place-related tasks since they deal only with tasks invoking
only one system. The richest task model for our needs seems
to be the ConcurTaskTree or CTT model.

In highly dynamic environments, such as those involved in
ubiquitous computing cases, we need to update the task model
at runtime to adapt the application to specific circumstances. A
number of works have been carried out regarding the real-time
adaptation of applications based on task models. In the domain
of user interfaces, in [17] authors present an executable task
model to create applications adapted to the actions of the user.
They extend the CTT notation to allow the dynamic execution
of a task model at run-time by keeping the active task state for
leaf tasks. Additionally, the authors propose input and output
ports to extend the temporal operators to facilitate information
exchange. Their application interprets and wuses the
information conveyed by the task model. They used this
executable task model to generate a user interface composed
of pre-programmed UI blocks.

One major application of models at runtime is the
adaptation of systems at runtime. In [18] the authors propose a
method of task and memory assistance for elderly persons
using a mobile communication device including storing a
profile of a user and determining a task to be performed by the
user based on the user profile. This application aims to help
persons suffering from cognitive impairments to perform tasks
composed of sequential steps involved in a daily routine.
Another approach for runtime adaptation based on models is
discussed in [19]. In this work, runtime models are used for
self-adaptation in the ambient assisted living domain.
Interactive components are equipped with an adaptation and
configuration model. The adaptation manager monitors
context changes in order to decide which system change to
choose among a set of predefined possible system changes.
This decision is then performed by a configurator component.
Another work [20, 21] presents a self-adaptation runtime
model for Self-Adaptation in the Ambient Assisted Living
Domain. They use models at runtime in order to make the
running system aware of the context information. They
applied the approach to build adaptive multimodal user
interfaces for smart home environments.

II1.

Here we will describe our proposed task model which is
inspired of the CTT model in order to adapt it to the
specificities of Aml environments. The model state is
dynamically changing to respond to the continuous changes in
the environment. Our monitoring system will be based on the
use of this new task model in runtime.

RUN TIME EXECUTABLE TASK MODEL

A. Task Tree Structure

Our task model has a binary tree-like form: each task is
decomposed into a maximum of two tasks. A hierarchical
structure enables a clear identification of task steps necessary
to reach a certain goal. We distinguish between two types of
tasks: Concrete Tasks and Abstract Tasks. The Concrete Tasks
are the leaves of the tree; they represent elementary tasks that

692

can be detected while being performed by the user, the system
or both in the case of Interactive Tasks. These tasks cannot be
further decomposed.

The abstract tasks reflect the behavior of a temporal
operator connecting two subtasks as illustrated in figure 1:

Temporal Relation
Abstract task

Left child Right child
Concrete task Concrete task
Or Abstract Task

Or Abstract Task

Fig. 1. Example of Tasks Decomposition

B. Annotation of elementary tasks annotation

An elementary task has a number of proprieties which can
either be static (once established the information contained
will no longer change), or dynamic (their content will change
when receiving new information from the environment). We
will use “D” to refer to dynamic proprieties and “S” for static
ones.
e Identifier or task name “S”.
Importance “S” {high, medium, low}: this
characteristic will be helpful when concurrent tasks
need to be prioritized.
State “D” {Inactive, Possible, Active, Suspended,
Done, Stopped}: calculated with respect to the
temporal relationships connecting the different tasks
(see below).
Interruptible “S”: indicates whether the execution of
the task can be interrupted by another task.
Service “S”: represents a service invoked by the task.
For purely user tasks this field will be empty as there
will be no call for services.
Pre-condition “S”: a condition that must be verified
before the task can occur. The prerequisites of the
task will include all the necessary conditions for the
realization of the task such as being in a specific
location or manipulating a specific object.
Post-condition S a set of conditions which are
known to be verified after the execution of the task,
thereby describing its effect on the environment.
The state of Pre- or Post-conditions will be changed
at the reception of a new entry from the environment.
Obligatory ”S”: determines whether the non-
realization can have serious consequences on the
environment or to achieve a given purpose.

C. Temporal operators for abstract tasks

The abstract task plays the role of a scheduler between its
two children tasks. We used a rich set of temporal operators
(the same used in CTT):

Choice []: the left or right action can take place (only
one of them can be performed).

Order Independence |=|: both of the actions must be
performed but in any order, we can start with the
execution of the left or the right task.

Interleaving|||: the two tasks are performed in parallel.
Synchronization |[]|: the two tasks they start and end
their execution at the same time.

Disabling [>: The left task starts and can be
interrupted by the right task but in this case it cannot
be resumed any more.

Suspend-Resume [>: The left task starts and can be
interrupted by the right task, once the right task is
executed the left task can be resumed.

Sequential Enabling >>: Once left task is entirely
executed we can start executing the right task.
Sequential Enabling Info []>>: same principle as
previous but once the right task ends it passes
information needed by the left task.

D. Task states

Since we propose a run-time task model, the task state is
updated continuously with the changes in the surrounding
environment. The possible states of a task are:
e [INACTIVE: The initial state; the task has not yet

been performed.
POSSIBLE: it means that the task can be performed.
ACTIVE: the task is being performed.
SUSPENDED: this task was being performed when
another task suspended it and its realization will be
resumed once the new task is totally executed.
STOPPED: the execution of the task was interrupted
by another one and cannot be resumed.
DONE: the task was completed entirely with success.

Task states and the transitions between them are the main
source of information when trying to capture the current state
of a task model. Figure 2 shows the complete set of states
including the transitions.

DedarePossble

event Start

Possble

Declarelnactive

Resume

Suspended

Fig. 2. Possible Task States Represented as a state machine

By default a task is in the INACTIVE state. The states of
the different tasks are calculated each time the system receives
an event from the environment. A POSSIBLE task changes to
the state ACTIVE when the system notices the beginning of
the realization of the task. Once we receive an end event
reflecting the completion of the task, the task model changes
the state of the task to DONE and sets its post-condition to
true.

693

IV. MONITORING AND ASSISTANCE ALGORITHM

A. Global architecture of the solution

We propose a Monitoring and Assistance system that is
based on the use of the above task model at run time as a
reference to what has to be done. This information is
compared to what is really actually done in order to give
help to the user if he/she omits to do a task. This is
presented in figure 3.

Monitoring system(3):
compare the two sources of information (1,2)

order the interactions (4)
mp\/ \wut
Sensors(2):

Task Model(1):
what is intended to be done information on what is being done

output

A

Interaction Module(4)

Fig. 3. Global Architecture of the System

The system (3) continuously receives information from the
sensors (2) giving information on what is actually occurring in
the surrounding environment. This information is compared to
the information contained in the task model (1) that describes
what the user has to do. If the system notices that the user is
doing a wrong task, it orders the interaction module (4) to
inform the user that a certain task was not done correctly or
that he/she has not done a task.

B. Algorithm description / System Behavior

The system receives in real time information describing what
is happening in the environment. We distinguish between two
types of entries that can be received:

1) Any information about the processing of a concrete task:
if it has started or finished.

2) Any noticed change in the state on the different sensors
that could be useful to calculate the state of the pre-conditions.

Each time the system receives information it updates the
current state in the run-time executable task model to be able
to follow the progress of tasks realization. Once the system
receives sensor information it updates relevant pre-condition
in the task model.

When receiving an entry of type (1), the system calculates
the new state of the task and notifies the parent tasks about
this new state. These parent tasks recalculate their own state
and the state of their own children. This information is
propagated (with respect to the semantics of the different
temporal operators between them) until it reaches the root
task.

The system must ensure that all the pre-conditions of a
task are satisfied before it can start. Pre-conditions can be for
example: “At least one device with the service invoked by the
task is available” or “the user must be in the realization area of
the task™ (this area is defined for each specific service using a
given device).

The monitoring system refers to the states of the sensors to
evaluate pre-conditions. Once a task becomes DONE its post
conditions are set to true and the system propagates this
change to the pre-conditions of all other tasks since a post
condition of one task can be a pre-condition of another.

When the system sets a task as POSSIBLE it triggers the
DTE or Deadline Time for Execution count down. We define
the DTE as the maximum time duration between the instant
the task gets the state Possible until it starts being active. This
information is used for assisting the user. Some tasks needs to
be completed after a certain period of time and no later as their
non-realization could have dangerous effects on the
environment. Let’s take an example of a cooking task that
must not exceed ten minutes. The user must switch off the
cooker ten minutes after turning it on, this time must not be
exceeded otherwise the meal will be burned. The system must
instruct to the user to do the task before this period of time
expires. This alert must be early enough so that the user can
notice it and act before the deadline.

Consider a task Ti having a set of pre-conditions called

Prec. Texee 18 the time needed to accomplish a task or a pre-
condition. The deadline time for execution of the task Ti is
equal to the time needed to accomplish the longest pre-
condition of Ti added to the time needed to notify this change
to the system called Toifchange: DTE could be formulated as
follows: DTE(T1)= maxp e prec [Texec(p)+ TnmifChange(p)]
In some cases the pre-condition “p” could be a post condition
of another task Tj so we need to wait for the execution of Tj to
get the pre-condition verified. This leads us to this second
definition: Texec(p)= Texec(Tj)+ TnotifChange(Tj)+DTE(Tj)

Knowing the approximate time of task realization we will
be able to establish the task planning in advance. The
monitoring system will be waiting for the realization of the
task pre-condition and at the same time will look for a
substitution system action that could verify the pre-condition.
If there is a system action able to verify this pre-condition, the
system performs it and waits for the start of the task. If the
pre-condition cannot be verified by a system action, the user
has to be alerted that a certain condition has to be verified. If
we continue with the cooking example, the user task is to
switch off the cooker; the pre-condition of this task is to be in
the kitchen. If the system notices that the user is not in the
kitchen in time, it cannot change the user place but only alert
him to move to the kitchen to be able to realize the task.

Figure 4 presents an overview of the monitoring algorithm.

694

Activate deadline &
substituable

Task Possible
acknowledgement
Systeme Task Wait for Preconditions Alert user
Activation deadline &'
Zsubstituable

System Task
Done

Precondition true

Wait for starting

event START

event END

Set postcondition true

Fig. 4. Assistance and monitoring Algorithm

V. THE SIMULATOR

A. Ambient scenario “Daily tasks”

Bob starts his daily tasks. He can either start with
preparing foods or cleaning the house. Both of these two tasks
can be interrupted by a phone call or someone knocking at the
door.

To prepare lunch he must start by cooking pasta: first of all

he takes the pan out at the cupboard; he puts water in it and set
it on the cooker. Once the water is boiling, he can put the pasta
in the pan. He tastes the pasta and finds them ready so he takes
them out of the pan and drains the water.
Now that the pasta is ready he has to prepare the sauce, first he
starts peeling an onion. At this moment the house phone starts
ringing; he goes to answer the call and suspends his current
tasks. Once he finishes the call, he comes back to the kitchen,
cuts the onion into small pieces, takes the stove out of the
cupboard and puts the onion in it. He adds vegetable oil and
puts the mixture in the cooker and 4 minutes after he pours
sauce. Ten minutes after the system notices that he didn’t
come back to put off the cooker. The system instructs him to
take off the sauce and to put off the cooker. He comes running
and did what he forgot to do.

Once the lunch is ready he turns to the cleaning of the
house. He starts with ordering beds and dusting the furniture.
At this moment his son comes back from school and knocks at
the door, so he interrupts his activity, opens the door for him
and comes back to clean the floor with the vacuum cleaner
before starting to wash the dishes and washing clothes.

B. Simulator

To validate our algorithm we have developed a simulator that
takes in input a task tree built with the Concur Task Tree
Environment (or CTTE) [22]. This tool will be used to build
task models (see figure 5).

TakeOutTheFan

FutiraterOnFan SetOnTheCooker FutFastaOnTheFan

Fig. 5. Example of a CTTE task tree

We have developed a parser that performs a depth-first
traversal of the task tree. The generated task model is a binary
task tree built with respect to the different temporal relations
and their priorities. Figure 6 is an example of how a CTT
model is transformed into one of our binary trees.

Resulting TaskTree

T!I A
- =
e
8 1
L S RN
B [o]

Fig. 6. From CTT model to our presentation

For each level of the input task tree, we will store the
temporal operators and restructure the task tree referring to
their priorities. For each concrete task we will store a copy of
the information extracted from input task tree. We also store
for each task the services addressed, the possibility of
interrupting it, the deadline of execution and the set of its pre-
and post-conditions. It is not possible to add such information
in the CTT model except the pre- and post- conditions that are
already included but they use a specific syntax that doesn’t
allow us to express all possible conditions.

We use CTT’s plain text “description” field to add specific
information.

Pre-conditions are written in propositional logic. For example:
((precdl | precdS) & !precd6)

e | or+represent the operator OR
e & or * represent the operator AND
e ! represents NOT.

Figure 7 shows a sample of our model binary tree like form.

A- DailyTasks -» SuspendResume (POSSIBLE)
A- null -> SuspendResume (POSSIBLE)
A- null -> OrderIndependence (POSSIBLE)
A- PreparingFoods -> SequentialEnabling (POSSIBLE)
A- null -> SequentialEnabling (POSSIBLE)
A- PerparePast -> SequentialEnablingInfo (POSSIBLE)
A- null -»> SequentialEnablingInfo (POSSIBLE)
A- null - SequentialEnabling (POSSIBLE)
A- null -> SequentialEnabling (POSSIBLE)
C- TakeOutThePan (state: POSSIBLE **** precondition: (" CupboardOpen’ & “PanOn”
- PutMaterOnThePan (state: INACTIVE **** precondition: (("PanOnHand™ & ~Opent
(- SetOnTheCooker (state: INACTIVE **** precondition: (*CookerOn’ & *FreePlaceOn
C- PutPastOnThePan (state: INACTIVE **** precondition: ("WaterBoiling™ & ~PanOnTheC
C- DrainThePasta (state: INACTIVE **** precondition: (WaterLevel<Min' | ~PastaReady”)
A- preparer sauce -> SequentialEnabling (INACTIVE)

Fig. 7. Our Binary Task Tree —initialization phase-

695

“A” means it’s an abstract task and “C” means it’s a concrete
task or a tree leaf that is an observable task. Each task has its
state between the first brackets, inactive is the initial state.

The environment changes can be communicated to the
monitoring system using this window:

(= 5 |

|=| Context Change Notification Window

Fig. 8. Context Change Nofitication Window

Two types of entries can be received:

e TaskID START/END : The taskID refers to the name
of the concrete task, the event Start means that the
execution of the task has started and the event End
means that the task was performed entirely with
success.

[]

Info Pre-condition state (true/false): This second type
of entry gives information provided by the different
sensors. The system is informed each time that we
notify any change in the environment. Any
information concerning the pre-conditions received
by the system is communicated to all the pre-
conditions containing this condition.

If the pre-condition of a task is verified (as shown in figure 9),
it becomes feasible and it can start operating.

|=| Context Change Notification Window

1 |infa PanOnThaCupsord TRUE

| TakeOutThePan feasible true

Fig. 9. Example of a task change to feasible

Now that the pre-conditions are verified, we notice that the
task “TakeOutThePan” is started, this information is provided
to the system which has to recalculate at run time all the task
states with respect to the temporal operators connecting them.
At this stage, we can receive an event end on the active task or
information on any pre-condition state. Let’s consider that we
had the three pre-condition of the next task true, the result will
be shown in Figure 10.

|2 Context Change Notification Window

| 1 |info PanOnHand TRUE

) verified |

PutWaterOnThePan feasible true

Fig. 10. Example of entering a condition change state

And now let’s see what happens when we receive an event end
on the active task: the task state changes to done, the next task
takes the state possible and the post-conditions of this task are
set to true (see figure 11).

Once a task DTE remaining is becoming very short, the
system will show a red message to the user telling him/her that
this task is urgent and he/she must proceed to its execution.

A- DailyTasks -» SuspendResume (ACTIVE)
A- pull -» SuspendResume (ACTIVE)
A< null -» OrderIndependence (ACTIVE)

A- Preparingfoods -» SequentialEnabling (ACTIVE)
A- null -3 SequentialEnabling (ACTIVE)

| =| Context Change Notification Window

&- PerparePast -» SequentialEnablingInfo (ACTIVE)
A- null -»> SequentialEnablingInfo (ACTIVE)
A- null -» SequentialEnabling (ACTIVE)

[[TakeDutThePan END|

|

A- null -» SequentialEnabling (ACTIVE)
C- TakeQutThePan (state:

DONE **** precondition: (CupboardOpen™ & "PanOnTheCupberd’) **** DTE:

15 **** postcond

C- PutWaterOnThePan (state: POSSIBLE **** precondition: ((PanOnHand™ & "Openfaucet’) & "niveauEaul’) **** DTE:

C- SetOnTheCooker { state: IMACTIVE **** precondition: (" CockerOn’ & *FreePlaceOnTheCooker™) **** DTE: 5 **** postce

C- PutPastOnThePan { state: IMACTIVE **%* precondition: (" WaterBeiling® & *PanOnTheCocker®) **** DTE: 15 **** postcondi

C- DrainThePasta (state: INACTIVE **** precondition:

(" WaterLewvel<Min™ |

"PastaReady”) **** DTE: 15 **** postcondition: P

Fig. 11. Task States updated at the reception of an event end and post condition set true.

VL

In this paper we have proposed a task model adapted to
ambient environment that extends the existing CTT notation
and semantics and its state can be updated in real-time. Our
extensions include the definition of different levels of task
states for concrete tasks (leaf tasks) and abstract tasks (parent
tasks). Also we have defined the information exchange
between parent and children tasks with respect to the
semantics of the temporal operators while moving from one
task state to another.

We have further shown how a monitoring and assistance
system can use such an executable task model to dynamically
follow the execution of the tasks, according to the status of the
task model and knowing what is really occurring in the
environment from the information given by the sensors. Our
system automatically inherits the correct temporal behavior
according to our model.

The example simulator used in this work is simple. We are
currently investigating a real-scale validation of our
monitoring system based on our dynamic task model on our
intelligent room at our lab.

Our research on using task models at runtime is still in
progress. The executable model is meant to be a prototype that
further research can be based upon. We plan to deploy our
monitoring system in a real application case in order to see
whether it is helpful for users. Future works will focus on the
determination of the best strategies for interaction with a user
since a silent system is not useful and a system with a lot of
notification is also embarrassing to the user and could disturb
him/her while doing his/her tasks.

CONCLUSION

REFERENCES

G. Riva, M. Lunghi, F. Vatalaro, and F. Davide, “Presence 2010: The
Emergence of Ambient Intelligence”, in: G. Riva, W.A IJsselsteijn
(Eds.), Being There: Concepts, effects and measurement of user
presence in synthetic environments, I0S Press, Amsterdam, 2003, pp.
60-81.

A. Gaggioli, “Optimal experience in ambient intelligence”,in Ambient
Intelligence, IOS Press, 2005, http://www.ambientintelligence.org.

(1

[2]
[3] G. Gonzilez, , A. Cecilio, B. Lopez, , and de la Rosa “Smart user
models for ambient recommender systems®. In Ambient Intelligence and
(Everyday) Life., University of Basque Country, San Sebastian, Spain,
pp. 113-122., 2005.

F. Paterno, “Task models in interactive software systems”, Handbook of
Software Engineering and Knowledge Engineering, Vol 1, 2002,
Publisher: World Scientific, pp 1-19, ISBN: 981024973X, DOL
10.1002/9780470757079.ch4.

[4]

696

(3]
(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[13]

[16]

[17]
(18]

[19]

[20]

[21]

(22]

E. Schulungbaum, “Model-based user interface software tools current
state of declarative models”,1996.

T.C. Ormerod, A. Shepherd, “Using Task Analysis for Information
Requirements Specification: The Sub-Goal Template (SGT) Method”,
The Handbook of Task Analysis for Human-Computer Interaction.
Mahwah, NJ.: Lawrence Erlbaum Associates, 2004, pp. 347-365.

A. Gharsellaoui, Y. Bellik, C.Jacquet. “Requirements of Task Modeling
in Ambient Intelligent Environments”. AMBIENT 2012, the Second
International Conference on Ambient Computing, Applications, Services
and Technologies, September 2012. pp. 71-78. IARIA. ISBN: 978-1-
61208-235-6.

J. Guerrero-Garca, J. Vanderdonckt, J.M. Gonzalez-Calleros. “Towards
a multi-user interaction meta-model”, Working paper 08/28, 2008.

D. Diaper, N. A.Stanton, “The handbook of task analysis for human
computer interaction”,2004, pp.67-116.

S.Mills. “Contextualising design: Aspects of using usability context
analysis and hierarchical task analysis for software design”, Journal of
Behaviour & Information Technology archive, Vol 26, Issue 6,
November 2007, pp 499-506.

Gerrit C. van der Veer , Bert F. Lenting , Bas A.J. Bergevoet. “GTA:
Groupware task analysis - modeling complexity”, Acta Psychologica,
1996, vol 91, pp.297-322

P. Rigole, T.Clerckx, Y. Berbers, K. Coninx. “Task driven automated
component deployment for ambient intelligence environment”,
Pervasive and Mobile Computing, vol 3, Issue 3,2007, pp.276-299,
ISSN: 15741192, DOL: 10.1016/j.pmcj.2007.01.001.

J. Coutaz, F. Paterno, G. Faconti, L. Nigay. “Comparison of approaches
for specifying multimodal interactive systems”,1994.

W3C group,“Task Meta Models”, February 2010, Online:
http://www.w3.0rg/2005/Incubator/model-based-ui/wiki/Task

Meta Models.

M. Barthet, F., & Tarby, J.-C, “The Dianet method”. In J.

Vanderdonckt, (Ed.), Computer-aided design of user interfaces, 1996, pp.
95-120. Namur, Belgium: Presses Universitaires de Namur.

F. Moussa, M. Riahi, C. Kolski, M. Moalla. Interpreted petri nets used
for human-machine dialogue specification,1st ed., vol. 9. I0S Press:
Integrated Computer-Aided Engineering, 2002, pp.87-98.

T.Klug, J. Kangasharju, “Executable Task Models”, TAMODIA 2005,
26-27 Septembre.

A. Helal, C.Giraldo, W.Mann, “Daily task and memory assistance using
a mobile device”, US Patent 20050057357 A1, Mar 17, 2005.

D.Schneider, M.Becker, “Runtime Models for Self-Adaptation in the
Ambient Assisted Living Domain”, 3™ International Workshop on
Models at Runtime at MoDELS’08,2008.
G.Lehmann, M.Blumendorf, F.Trollmannl, S.Albayrak,” Models in
Software Engineering”, 2011, pp 209-223.

M.Blumendorf, G.Lehmann, S.Albayrak, “Bridging Models and
Systems at Runtime to Build Adaptive User Interfaces”, EICS '10:
Proceedings of the 2nd ACM SIGCHI symposium on Engineering
interactive computing systems, 2010, Berlin, Germany.

F. Paterno, “Task models in interactive software systems”, Handbook of
Software Engineering and Knowledge Engineering, Vol 1, 2002,
Publisher: World Scientific, pp. 1-19, ISBN: 981024973X, DOI:
10.1002/9780470757079.ch4

