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Abstract 

 
In the context of component-based design, we 

propose ADLV1, an architecture description language 
based on IDL3, which allows the specification of 
properties that should hold on the system. The joint 
description of both the structure of the application and 
the properties it should satisfy allows us to derive the 
properties that should be formally checked on the 
control component of the system. We focus here on the 
ADLV language and tool and on code generation for 
the CCM platform from ADLV descriptions. Code 
generation must preserve the semantics of special 
components that are in charge of interfacing the 
control and the processing parts of the application. 
 
1. Introduction 
 

An advantage of formal methods, in particular 
specification and programming languages with formal 
semantics, is to allow for automatic validation 
techniques which significantly reduce the validation 
phase of embedded systems. This is a key point in the 
success of synchronous languages such as Esterel [2].  

In the context of component-based software 
engineering, Architecture Description Languages 
(ADL) are used to define an application as a set of 
interconnected components. The difficulty to apply 
model checking techniques with existing ADL is that 
model checkers work better with events or boolean 
values while the application designer desires to express 
the properties to be verified on the signals of the 
application, which often have more complex data 
types. The purpose of this paper is to describe a new 
ADL that integrates the classical component-based 
application description with properties to be verified by 
model checking. Using this language, called ADLV, 
the designer can express the properties to check using 
                                                             
1 This work has been performed in the context of the Usine Logicielle project 
(www.usine-logicielle.org) and is partially financed by the System@tic Paris-
Région Competitiveness Cluster (www.systematic-paris-region.org). 

application inputs and outputs, whatever their data 
type, and independently of the model checking tool.  

Section 2 is a brief overview of software 
architecture and CCM. Model checking is introduced 
in Section 3. Section 4 introduces the proposed ADL 
for verification and the associated tool. Before 
concluding, we present a case study in Section 5. 
  
2. Overview of Software Architecture 
 

Software architecture languages enable the precise 
definition of the overall system structure [6 and 10] as 
a set of interconnected components. There are several 
definitions of the term component, the most common 
being a software module with well defined interactions 
points called ports [5 and 8]. The architecture shows 
the intended correspondence between the system 
requirements and the elements of the constructed 
system. An architect must first define the contracts of 
the components required by the application, and then 
through what interfaces two components interact.  

The developers of components construct their 
implementations from their definitions. Then, the 
integrators create the relationships between the 
components identified in the architecture and the 
implementations produced by the developers. Finally, 
the deployment of a component-based application 
corresponds to the instantiation of the components, 
followed by the initial configuration and the 
interconnection of these instances. In order to model 
the interactions between components, software 
architectural elements called connectors are 
introduced, therefore a software system is defined in 
terms of components and connectors [12]. 

In the Common Object Request Broker Architecture 
(CORBA) specification [9], “component” is a basic 
meta-type. To ease and improve the quality of the 
application production process, the OMG has defined 
the CORBA Component Model (CCM), which is an 
industrial model for distributed business components, 



in the context of heterogeneous programming 
languages [11]. 

This component model uses ports to represent 
connection points. These ports, as well as the 
component types, are defined with the Interface 
Definition Language (IDL), an implementation neutral 
language. There are two categories of ports: ports used 
for communication with defined CORBA interfaces 
and ports used to exchange events. An extension of 
IDL allows for dataflow ports. 
 
3. Model Checking for Software Systems 
 

Model checking is a systematic way for checking 
whether all behaviours of a system model fulfil their 
specifications [7]. Formal property verification consists 
in proving properties by combining properties formally 
defined or already proved. 

Embedded software systems are often critical and 
thus require a high level of reliability and quality. This 
leads to lengthy and costly test phases. To ensure the 
reliability of such complex systems, verification 
methodologies become necessary in the process; one 
tries to construct a formal proof that shows that all 
executions of the program satisfy the desired 
properties. To perform verification, we need a 
modeling language to describe software architecture, a 
specification language for the formulation of properties 
to be checked, and a checking algorithm [4]. Many 
algorithms are based on graph exploration where the 
nodes are the states of the system and the edges are 
labeled by events that trigger the changes of state. 
Some recent ADLs can represent a system’s structure 
and behavior together with its dynamic changes and 
evolutions [13]. 
 
4. Architecture Description Language for 
Verification (ADLV) 
 
4.1. Overview 
 

We propose ADLV, which tries to integrate both the 
scopes of ADLs and of model checking. It is designed 
as an IDL extension. In our methodology, we impose 
that an application has only one control component, 
and may have several processing or internal 
components. Processing components communicate 
through data flows and are activated and intercon-
nected under the supervision of the control component 
which consumes and produces only pure events. 
Processing and control components are called external 
components because their behavior is specified using 
other tools. Internal components are small components 
whose behavior is specified in ADLV, and which are 

used to produce events from values and to create 
dynamic connections. The benefit of this explicit 
separation between processing and control is that it 
makes the control task explicit and verifiable.  

The ADLV tool that we developed is used both to 
produce the application targeted at an OMG’s 
Lightweight CCM (LwCCM) [3] implementation and 
to translate the application properties into control 
observers. The goal is to rely only on the description of 
the application structure and on the specifications of 
the internal components to transform the global 
properties to be proved into properties expressed in a 
form recognized by the checking tool used for the 
control specification.  
 
4.2. Principles of Property Verification 
 

The ADLV language allows the designer to specify 
properties that must be satisfied by the system. These 
properties must be expressed in linear temporal logic. 
Only the subset of canonical safety formulae is 
considered [1]. Such a formula specifies that some past 
temporal logic expression must always (or never) be 
true, and thus allows the designer to express the 
desired behaviour of the system. To ease the designer's 
task, safety properties may include conditions on 
dataflow values: this allows him/her to use a 
vocabulary 1) that he/she is familiar with and 2) that is 
well-suited for expressing general system properties. 

We have proposed a method [14] that relies on the 
ADLV description of the application, mainly the 
specifications of the internal components, to transform 
conditions on dataflow values into temporal logic 
formulae involving only controller events. We are thus 
able to build a formula, called intermediate form, 
containing only events. Next, we translate this 
intermediate form into an observer in the target 
language of the controller. Finally, we can use the 
language-specific formal verification tools to prove 
that the controller, and thus the application, satisfies 
(or does not satisfy) the safety properties. If the 
properties are not satisfied, these tools can provide a 
counterexample.  
 
4.3. Introduction to the ADLV Language 
 

The control, processing, internal and 
tool specific new keywords have been added to the 
IDL syntax. They are used to distinguish the different 
component kinds and to specify the tools used to create 
the implementation code of the external components. 
The ADLV description of components follows this 
grammar: 

control component <identifier> { 



    tool <identifier>; 
    <control_component_body> 
}; 
processing component <identifier> { 
    tool <identifier>; 
    <processing_component_body> 
}; 
internal component <identifier> { 
    <internal_component_body> 
}; 

The other syntactic aspects of external component 
bodies conform to the standard IDL syntax 
(consumes, publishes, sink and source). The 
bodies of internal components may specify which 
event to produce when some boolean expression, 
referring to dataflow values, becomes true; it may also 
define a dataflow value to store upon receipt of an 
event. An application is a kind of component with its 
own ports. It is defined by its component instances and 
by the connectors, which may be modified upon 
reception of an event, between component ports. 
Finally, extensions to the IDL language have been 
made to allow for expressing the properties to be 
verified. 
 
4.4. Architecture of the ADLV Tool 
 
The ADLV tool (see figure 1) is a set of Eclipse 
plugins. An abstract model of our language has been 
made and promoted as an eCore model to benefit from 
the Eclipse Modelling Framework services. A parser 

for the ADLV textual syntax is used to populate an 
ADLV model; such a model could also be obtained 
using an UML2 profile and a model transformation. 
The ADLV model is used by two tools: one is 
responsible for the generation of the observers in the 
controller language, the other is used for the generation 
of all the files needed for the chosen LwCCM 
implementation. These include the project build files, 
the standard CCM IDL files, the C++ implementations 
of the internal components, the C++ glue between the 
code generated by the tools used to design the control 
and processing components and the code expected by 
the containers of the LwCCM implementation, and 
finally the deployment XML files. 
 
5. A Case Study in ADLV 
 

Our case study (see figure 2) is a classical example 
of a car cruise control system; its main purpose is to 
maintain speed at a given value selected by the driver, 
which involves an automatic control system. The 
application has been described in ADLV and a 
simplified car simulator with a graphical interface has 
been created to demonstrate the generated application. 

The cruise control system receives two events (start 
or stop the regulation) and three data flows (positions 
of the brakes and the accelerator pedal, current speed). 
The last one is used by three components: the 
duplication of this input value is automatically 
generated by the ADLV tool in the projection to 
LwCCM phase. The cruise regulator provides a 
command to the injection system that is either directly 
the one generated by the accelerator pedal, or the one 
calculated by an automatic control component to 
maintain an exact speed value when regulation is 
active. 

The component in charge of the regulation, an 
external processing component in ADLV terminology, 
has been designed with Simulink while the other 
external component, the controller, is implemented in 
Esterel. 

There are three internal components: two of them 
produce events from data flows (Brakes Check and 
Speed Check), the third is needed to provide the 
processing component with the target speed as a 
dataflow value using the current speed as input and an 
event from the controller as an order to memorize it. 
Finally, there is a dynamic connector driven by the 
controller to select the right output. 

The designer of this system can write application 
properties to be verified such as: 1) regulation is 
deactivated when the driver depresses the brakes pedal, 
2) the regulator is placed in standby mode when the 
driver depresses the accelerator, until the accelerator is 



released (provided that regulation was initially active), 
3) the activation of regulation is prohibited if the speed 
is not in an allowed range, etc. These properties are 

converted into Esterel observers and checked against 
the controller implementation, which has been realized 
independently of the whole system architecture (only 
its interface is imposed). 
 
6. Conclusion  
 

In this paper, we have presented our efforts to 
design an Application Description Language that can 
be used both for deploying and for verifying the 
application. 

One of the goals of ADLV is to use the structure of 
the application to transform global properties on the 
application into properties on the control that, in turn, 
can be transformed into observers. These observers are 
recognized by the checking tools associated with the 
language used to specify the control.  

 To make this approach successful, we have limited 
the design choices of the developers: an application is 
made of only one control component which uses only 
pure events, of several processing components which 
consume and produce data flows, and of internal 
components which compute events from data flows 
and control the application in response to the events 
produced by the controller. As a counterpart to these 
restrictions, we provide a tool for generating all the 
needed files to build and deploy the application on a 
LwCCM execution environment, including the glue 
needed to integrate the code generated by the tools 
used for the external components. 
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Figure 2. Architecture of the cruise controller 


