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Abstract—Ambient intelligence (AmI) systems are smart 
interactive systems that perceive their surroundings using 
sensors and act upon them using actuators. One of the most 
common applications of such systems is Smart Homes. In this 
context, the ambient system can offer a great level of 
dependability if it is able to exploit available sensor data in 
order to autonomously perform diagnosis. However, ambient 
environments are dynamic in a sense that components, in 
general, and actuators and sensors, in particular, can be added 
or removed from the system at run-time. This dynamicity 
raises new challenges not addressed in the state of the art of 
fault detection and diagnosis techniques. Unlike classical 
control theory methods, control-loops between ambient system 
components cannot be pre-determined at design time. In this 
paper we propose a new approach based on the modeling of 
physical phenomena, allowing one to use available resources to 
predict the values that are supposed to be read by sensors. 
Comparing the predictions and the real readings allows us to 
detect potential faults. Fault detection may be followed by fault 
isolation, which tries to identify the faulty component precisely. 

Keywords-Ambient intelligence; ubiquitous systems; sensor; 
actuator; fault detection; diagnosis; ontology; physical law; 
Smart Home; Pervasive Computing. 

I.  INTRODUCTION 

Ambient intelligence (AmI) refers to interactive systems 
in which the processing and interaction capabilities are 
embedded into everyday objects. Such systems act upon the 
environment using actuators and they perceive their 
surroundings using sensors. The main objective of an AmI 
environment is to address the needs and preferences of the 
user. Applications range from enhancing everyday life tasks 
to monitoring and guaranteeing patients’ safety in hospitals. 
To ensure the achievement of their goals, ambient systems 
depend strongly upon the proper conduct of tasks that are 
performed by actuators. 

In this context we want to endow such systems with tools 
allowing them to check autonomously whether or not 
systems tasks are performed properly. As a matter of fact, 
when an ambient system sends out orders to an actuator, the 
proper way to verify whether an order has been executed 
properly is to exploit the sensors’ readings in order to ensure 
that the state of the environment has changed as expected. 
For instance, when the system activates a light bulb, the 
hardware infrastructure and communication capabilities 
allow the system to verify whether the order has been 
transmitted properly and that the electric circuit of the light 

bulb has been closed. However, the light bulb could have 
been damaged and so it would not be lit properly. So to 
verify that the light has really been switched on, the readings 
of the proper light sensors must be considered. New 
challenges arise: first selecting relevant sensors (here light 
sensors), second selecting only sensors that are exposed to 
the actions of specific actuators (here light sensors exposed 
to the light emitted by a given light bulb). A solution to that 
from control theory consists in pre-determining closed 
control loops using ad-hoc sensors. However, one of the 
main particularities of ambient systems is that, unlike 
traditional systems, physical resources (mainly sensors and 
actuators) are not necessarily known at design time. In fact 
they are dynamically discovered and may appear and/or 
disappear at run-time, so the solution using pre-determined 
control loops cannot be adopted in such open environments.  

We propose a solution that allows the automatic and 
dynamic construction of links between actuators and sensors 
in ambient systems by exploiting available resources at a 
given time, and using them to perform fault detection and 
diagnosis (FDD) at run-time. The approach is based on the 
modeling of the physical phenomena (that we call effects) 
expected to occur in the environment when a given actuator 
is activated. Effects are characterized by physical laws that 
can be modeled at various levels of details. These laws 
depend on physical parameters associated with actuators and 
sensors types. By exploiting modeled information and 
physical laws, the system is able to automatically create 
associations between actuators and sensors. Then by 
performing the proper calculations, the system deduces the 
measurement expected from a given sensor when a certain 
action is performed by an actuator (for instance, an increased 
temperature level may be expected within a certain time 
lapse when a heating system is activated). 

This way, the system is able, first by comparing these 
calculated values with the actual sensors readings, to detect 
the existence of faults (fault detection), then by reasoning 
over a diagnosis model, to produce an accurate diagnosis 
(finding the fault source, which could come either from the 
actuators or from the sensors themselves) at run-time without 
requiring the explicit coupling of actuators and sensors at 
design time. The relations between the actual components 
are entirely deduced at run-time from the characteristics of 
actuator and sensor types. Therefore it is well adapted to the 
openness of ambient systems.  

This paper is organized as follows. Section 2 is a state of 
the art of some existing diagnosis techniques, in the fields of 
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automatic control and AmI. Section 3 describes our fault 
detection and diagnosis approach. Section 4 shows how this 
approach may be applied to a complete fault detection 
example illustrated using our diagnosis simulator. Finally, 
the conclusion highlights some directions for future work. 

II. STATE OF THE ART 

Fault detection and diagnosis first appeared in the field of 
automatic control, in which systems are modeled 
mathematically in the form of differential equations, or their 
equivalent transformed formulations [1]. Many works have 
been done in the field of automatic control to improve 
system reliability; generally the resulting systems are fault 
tolerant systems. However, the systems in automatic control 
are usually pre-defined: manufacturing systems composed of 
machine tools, robots, transportation systems or well-defined 
household appliances. These systems do not exhibit some of 
the particularities of ambient systems such as dynamicity 
(devices are continuously changing states, reading values, 
positions, adapting to the context etc.), high heterogeneity of 
devices, and openness (adding or removing devices at run-
time) [2].  In the field of automatic control, fault detection 
and diagnosis consist of three main tasks:  

• Fault detection: finding out if something is not 
working as expected in the diagnosed system. 

• Fault isolation: finding the cause of a detected fault. 
• Fault identification: determining the nature and 

magnitude of a fault. 
Fault detection and isolation are the most important tasks in 
fault detection and diagnosis systems. Fault isolation and 
fault identification are usually referred to together as fault 
diagnosis. Fault identification, even though useful, is 
sometimes ignored as the effort it requires is not worth the 
resulted information. In this paper we introduce a framework 
that focuses mainly on fault detection and isolation in the 
field of AmI systems.  

Note that since AmI systems are user-centered, diagnosis 
can refer to two kinds of tasks: (i) user-behavior diagnosis, 
which corresponds to verifying whether the user has properly 
done his/her expected task, (ii) system-behavior diagnosis, 
consisting of verifying whether the system actuators have 
performed their task properly. Many techniques are proposed 
for user-behavior diagnosis, especially in the field of 
Ambient Assisted Living (AAL); the approach consists in 
gathering user data (behavior, preferences, etc.) in order to 
apply machine learning techniques [3] to detect anomalies in 
user behavior. In this paper we focus on fault detection and 
isolation of system behavior only. 

In addition to the particularities of AmI systems 
mentioned earlier, one of the main challenges of ambient 
environments is that services, whose goal is generally to 
satisfy user’s preferences by performing a specific task, are 
executed in the background such that they are unnoticeable 
by the user. This requirement causes some difficulties for 
fault detection because a non-intrusive system cannot 
decently flood the user with a large number of fault detection 
data. Conversely, users uninformed of detected faults may 
continue to rely on failed services without noticing. This can 

be very critical as AmI systems are becoming increasingly 
autonomous and complex. That is why many infrastructures 
for pervasive computing, incorporate fault-tolerant 
mechanisms. Examples include the Context Toolkit [5], Aura 
[6], Solar [7], ConFab [8] and Gaia [9]. These systems 
provide system-level mechanisms for monitoring application 
components and address particular issues that arise in 
pervasive computing contexts such as management of 
heterogeneous resources and distributed computing. In 
particular the prototype of Gaia implements some fault-
tolerance mechanisms, and it has been extended with some 
fault handling techniques [10]. These mechanisms include 
heart-beat-based status monitoring, redundant provisioning 
of alternate services and/or applications, and restarting failed 
application components. Different failure reasons were 
identified [9] and classified [10]: components and/or services 
failing due to low battery power, physical damage, network 
disconnections or Quality of Service (QoS) problems, and 
Byzantine failures caused by deliberate attacks on the 
application. [11] introduces a recovery model for context-
aware environments. However it focuses on recovering from 
design errors at the application level (namely object binding 
failures), and not on resilience to physical failures. 

In our approach we are more interested in a model-based 
FDD technique, which is a technique based on a system 
description that is used to define the behavior of each 
component within the system and the connections between 
these components [12]. The technique consists in simulating 
the system’s behavior and reasoning over the system model. 
Obtained information is used to compare the expected 
system behavior with the actual system behavior, and thus to 
detect faults. The major challenge of this technique is 
combinatorial explosion which makes the approach useless 
for devices composed of a considerable number of 
components [13]. We claim that we can overcome this 
problem by describing, at the fault-detection task, only 
system components and structure but not the behavior. The 
system’s behavior, however, could be used at the fault 
diagnosis task to isolate the component whose behavior 
caused the fault. Another technique that is based on the 
description of the system’s behavior is [14], which deals with 
context aware adaptive applications where adaptation is 
defined via a set of rules. The technique consists in 
transforming the rule set into a formal finite-state model. 
Algorithms are then proposed to analyze the finite-state 
model in order to detect adaptation faults. The approach is 
different from ours since they compare system state to an 
already established set of adaptation fault patterns, whereas 
we dynamically deduce faults by comparing the real world 
state to the model dynamically at run-time. 

In other works, such as [2], there have been attempts to 
address the diagnosis problem in AmI using sensor networks. 
The technique consists in detecting faults within a sensor 
network by applying a fuzzy logic data fusion approach 
using a Statistical Process Control and a clustered covariance 
method [15]. We adopt another approach in which we do not 
rely on machine learning, instead we base our approach on 
the proper modeling of the diagnosed system. Models are 
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then used at run-time to dynamically draw conclusions about 
the proper operation of the system. 

In general, we notice that regardless of the approaches 
proposed in existing work, it is always supposed that sensors 
and actuators, whether they are represented in a model or 
not, are somehow directly linked. In other words the 
diagnosis system explicitly contains the relationships 
between actuator actions and sensor states. We claim that 
building such explicit links is poorly adapted to highly 
dynamic and open ambient systems. Indeed, as devices are 
added to and removed from an ambient environment at run-
time, it is very difficult for the system designer to thoroughly 
describe, at design time, how the system will be structured at 
runtime. For these reasons, we introduce our approach 
allowing the decoupling of actuators and sensors in the 
model, while enabling the deduction of the links between 
them at run-time. 

III.  OUR APPROACH 

A. Overview 

In this section we detail our Fault Detection and 
Diagnosis framework for ambient environments. We start by 
introducing the context of use of the framework. In Figure 1, 
the FDD framework is situated within the context of a real 
ambient system. The latter’s most important components, 
that are necessary to the operation of the FDD framework, 
are actuators and sensors.  These components, and other 
entities described later, are modeled in order to perform the 
Fault Detection and Diagnosis Tasks. As illustrated in Figure 
1, the FDD framework relies mainly on an environment 
abstract model, an environment concrete model, and 
instances of the latter. 

The environment abstract model is detailed in Figure 2. It 
defines the structure of the environment model in a way that 
enforces the decoupling of sensors and actuators at all levels. 
This is achieved by introducing the concept of effect, which 
is a modeling of the physical consequence(s) of the actions 
of actuators onto the environment. The Abstract Model is 
further discussed in Subsection C. 

The environment concrete model follows the general 
structure of the abstract model and defines sensor and 
actuator types, the expected physical effects, the appropriate 
physical laws and the relations between all these entities.  

An environment instance is created at runtime by the 
context engine that intercepts system events and signals. It 
contains the actual sensors and actuators as well as the actual 
values of effects produced by actuators and read by sensors. 

Because the models of a particular AmI system follows a 
common abstract model, it is exploitable by the prediction 
engine, responsible for deducing the values expected to be 
read by the sensors. Comparing these values with the actual 
sensor readings makes it possible to perform Fault Detection. 
Then, using the diagnosis model, the diagnosis engine is 
responsible for isolating these faults and determining exactly 
what components are responsible for them. In the following 
subsections, we discuss the different models composing our 
FDD framework and the fault detection tasks.  

To better explain our approach we will look at the FDD 
framework from two perspectives; (i) the FDD Framework 
Models (see Figure 3 and 4), which describes the way the 
ambient environment and its components are modeled within 
the framework, and (ii) the general structure and operations 
of the FDD framework (see Figure 5), in particular how the 
models defined in (i) are exploited by the FDD framework. 

 

 
Figure 1.  The FDD Framework Achitecture in the AmI context 

 
Figure 2.  Abstract Model 

B. The FDD Framework General Architecture 

This part describes the FDD Framework according to two 
perspectives; a conceptual point of view (Figure 3 and 4), in 
which we describe the models used by the FDD framework, 
and an architectural point of view, Figure 5, in which we 
describe the FDD framework’s architecture, operations and 
use of models. 

1) Models used by the FDD framework 
In order to the FDD Framework to perform the Fault 

Detection and Diagnosis tasks it uses information from the 
following models: 

• The Environment’s Static Model 
• The Environment's Dynamic Model 
• The Diagnosis Model 
In Figure 3, the “use” relation between the models 

describes in fact the way the FDD framework uses 
information from one model to construct the other. For 
example, as explained earlier, the FDD framework uses 
information from the static model in order to populate the 
dynamic model (create environment instances). 
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The Diagnosis Model is used to achieve fault isolation. 
Therefore its nature is completely dependent on the type of 
Diagnosis Engine used. We neither restrict the range of fault 
isolation techniques, nor the nature of the diagnosis model to 
be used. In all cases however, the FDD framework uses the 
static model to build or complete the Diagnosis Model.  

 
Figure 3.  The FDD Framework Models 

 
Figure 4.  The FDD Framework Models’ Hierarchy 

 
Figure 5.  Run-time Architecture of the FDD framework 

2) Architecture of the FDD framework 
The operations of the FDD Framework depend on which 

model from the FDD Framework Models is handled. These 
models are exploited by engines in order to deduce fault 
detection and diagnosis conclusions. The general run-time 
behavior of the framework, as shown in Figure 5, can be 
summarized by these steps: 
i) The Context Engine uses information from the 

hardware layer and from the Environment's Static 
Model to properly instantiate the real world objects. 

ii)  Information contained in the Environment's Static 
Model (Physical Laws to apply and/or Deduced Links 
between Different Types of Actuators and Sensors) and 

information contained in the Dynamic model (Actual 
Instances and their values) are used by the Prediction 
Engine to calculate the expected values of sensors. 
Simple comparison between predicted values and real 
readings of sensors allows us to detect probable faults. 

iii)  These conclusions (probable faults) with the calculated 
values, information from the Static Model, information 
from the Dynamic Model and information from the 
Diagnosis Model are exploited by the Diagnosis Engine 
to perform Fault Isolation. This completes diagnosis. 

C. The FDD Framework Models 

In this part we show how the abstract model allows one 
to model the ambient environment while enforcing the 
decoupling of actuators and sensors at design time. 

As shown in Figure 4, the environment model can be 
divided into two main parts: a static one and a dynamic one. 
The static model contains (i) the abstract model composed of 
generic entities, namely Actuator, Sensor, Effect, etc. and (ii) 
the concrete model that specializes and concretizes these 
entities (Light Sensor, Sound Actuator, etc.). Actuators 
produce Effects, which have Effect Properties (Figure 2). 
Sensors detect Measurable Properties. Laws relate all these 
kinds of Properties in order to model physical phenomena. 
Using laws it is possible to estimate the values detected by 
the Sensors. The dynamic model contains the actual instances 
of sensors and actuators present in the physical environment. 
It stores the current state of the environment (sensor values, 
actuator commands) and it is kept updated at run-time. 
Section 0 explains how this model is populated and updated. 

Let us see how this works on a concrete environment 
model, corresponding to a lighting system (Figure 7). The 
abstract Sensor entity is concretized as a Light Sensor entity 
(or a specific Light Sensor Type), the abstract Actuator entity 
as a Light Bulb (or a specific Light Bulb Type). Light 
Sensors and Light Bulbs share an Ambient Property which is 
the Zone in which they are located (for example the name of 
the room). A Light Sensor can detect a light level (Ambient 
Light concretizes Measurable Property). Likewise, a Light 
Bulb produces a Light Effect (concretization of Effect) 
which is characterized by a Light Intensity (concretization of 
Effect Property). A corresponding set of Laws is instantiated 
in order to calculate the value of the Light Intensity around 
the Light Sensor entity. 

The calculations will use properties such as the position 
of the Light Bulb and the Light Sensor to determine the 
distance between the two components, the light intensity 
emitted by the Light Bulb to determine the received light 
intensity. A combination law can be used if there is more 
than one Light Bulb emitting light toward the Light Sensor. 
It is important to note here that our approach does not 
impose a level of detail for the physical laws. It is up to the 
designer to choose the relevant level of granularity. Indeed 
one can imagine a different modeling for our example, in 
which the effect of light is represented by a Boolean value 
(light absent – light present). This freedom to choose the 
level of granularity is well adapted to AmI systems since 
their use in real world varies according to context. We can 
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imagine a smart home design for people with hearing 
impairment in which the modeling of the effect of sounds is 
very detailed in order to enhance the perception of sound.  

IV. LIGHT SYSTEM FDD EXAMPLE 

In this section we present an illustrative example in 
which we show how our FDD framework could be 
integrated into a real AmI environment. We suppose that our 
ambient environment is a smart home, in which we focus 
only on the lighting system. The living room and the 
bathroom are equipped with the following devices: 

• In the living room: 
o Three light bulbs: two are 23 W fluorescent light 

bulbs generating 1500 lm each, and one is a 60 W 
incandescent light bulb generating 800 lm. 

o Two light sensors: one is a photo transistor (with 
accuracy of ±75% [16]; it is from these accuracy 
values that we determine the tolerance value for each 
sensor type) and the other is a photo diode with a 
current amplifier (with accuracy of ±33%; called 
“Photo Diode” for short in the rest of the example). 

• In the bathroom: 
o A 100 W incandescent light bulb of 1750 lm. 
o A light sensor of type photo resistor (accuracy not 

guaranteed). 
The approximate positioning of these components is 

illustrated in Figure 6 (the exact x,y coordinates are defined 
later in the dynamic model; origin is at the top left corner and 
distances are in centimeters). The transparent circles around 
actuators have diameters proportional to the produced Light 
Intensity. Their only purpose is to allow one to quickly 
compare between actuator effects values. The actual intensity 
value is written under the actuator type picture. The intensity 
values read by the sensors are written after their names. 

A. The Simulator 

To implement the example we use a simulator that we 
have developed in Java (see Figure 6 for a screenshot). 

 
Figure 6.  The AmI Environment as  presented in the simulator 

B. Environment Model 

On Figure 4, the Environment's Static Model was 
described as composed of an Abstract Model and a Concrete 
Model. Figure 7 shows how the Concrete Model is 
structured, based on the Abstract Model, in the context of the 

lighting system. The Concrete Model is defined using a 
textual triplet-based syntax. For instance to define the sensor 
type “Photo Transistor” the syntax is: 
Photo Transistor is-a Sensor;  

Where “Sensor” is the Entity defined in the Abstract Model. 
And to describe the relation between “Photo Transistor” and 
the detected entity “Ambient Light Intensity” the syntax is 
the following: 
Ambient Light Intensity is-a Measurable Property; 
Photo Transistor detects Ambient Light Intensity; 

Where “Ambient Light Intensity” is defined as a 
“Measurable Property” and where “detects” is a relation 
defined in the abstract model as the link between entities of 
type “Sensors” and entities of type “Measurable Property”. 

This syntax is used to describe all of the Concrete Model 
depicted on Figure 7. The entities defined in the Concrete 
Model are the following (in bold, types from the abstract 
model): 

Sensors: Photo Transistor, Photo Diode, Photo Resistor. 
Actuators: Fluorescent-, Incandescent Light Bulb. 
Properties:  
Tolerance: A property for Sensors. It will be instantiated 

for Photo Transistors and Photo Diodes, which have 
tolerance values, but not for Photo Resistors. The value of 
tolerance of each sensor will be considered at fault detection 
stage as the threshold for error margin. 

Zone: is a property for all actuators and sensors that 
indicates the name of the room in which they are located. 
Two objects not in the same room are not supposed to affect 
each other as far as light is concerned. 

2D Position: is a property for all actuators and sensors 
that is represented by the coordinates of each component; 
however some actual instances may be without coordinates. 

Measurable Property: Ambient Light Intensity, an entity 
that models the expected readings of each Light Sensor. 

Effect: Light Effect, which is the main effect that is 
produced by the light actuator. By definition this Entity is a 
description of the physical phenomena observed as a 
consequence of the actions of actuators on the ambient 
environment. In this context it is a description of the light 
emission phenomena observed when a Light Bulb is on. 

Effect Property: Light Intensity, which is a property of 
the Light Effect. It contains the specific value of the light 
intensity of the Light Effect produced by each light actuator.  

Law: 
Ambient Light Law Set: this entity contains a set of laws, 

expressed as mathematical functions, that allows us to 
estimate the value of “Ambient Light Intensity” that each 
sensor is supposed to detect. The functions use values from 
other entities and results from other functions within the 
same law set to perform calculations. The functions are: 

SameZone (s,a) = ( Zone (s)  == Zone (a) )  (1) 

Distance (s,a) = 
│+∞ if SameZone(s,a)==false 
│Sqrt[( X(s) - X(a) ) 2+( Y(s) - Y(a) ) 2] otherwise 

 

(2) 

Sqrt is the square root function 
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Direct Light Exposure (s,a) = 
Light Intensity (a)  / Distance (s,a)

2  
(3) 

Ambient Light Intensity (s)  = 
∑(a) [ Direct Light Exposure (s,a) ]   

(4) 

(1) verifies whether or not a sensor and an actuator are in 
the same zone.  

(2) uses the x,y coordinates to calculate the distance (in 
centimeters) between an actuator and a sensor that are in the 
same zone. This function returns an infinite distance value 
when the two objects are not in the same room.  

(3) estimates the light intensity value at a light sensor 
when exposed to a single light source positioned at a certain 
distance (calculated from (2)) and generating a certain 
luminous flux. The input parameter luminous flux is the 
effect property that ensures that (3), and consequently the 
whole ambient light law set, only considers actuators that 
produce light effect. 

(4) calculates the sum of all the results from (3), which is 
the sum of the light intensities caused by each single light 
source on this paticular light sensor. (4) is the function that 
calculates the final theoretical value of the measurable 
property ambient light intensity around a sensor. The 
comparison of this value with the actual reading of the sensor 
is the basis of the fault detection task. 

In reality when instantiating actual objects from the 
hardware layer into the model, it is possible to fail to obtain 
the coordinates of the object (if no location service is 
available). In that case the “Ambient Light Law Set” is 
unusable. For that case we define another instance of Law 
that is adaptable for the new (lower) level of details in which 
some components are described: 

Ambient Light On Off Law Set: is a set of laws that is 
used when the coordinates of an object involved in the fault 
detection and diagnosis are unknown. In that case we apply 
Boolean functions to determine the expected sensor reading. 
The functions are: 

SameZone (s,a) = ( Zone (s)  == Zone (a) )  (1) 

Boolean Direct Light Exposure (s,a)  = 
SameZone (s,a)  & isON( Light Intensity (a) )   

(5) 

Boolean Multiple Light Exposure (s)  = 
OR(Boolean Direct Light Exposure (s,a) )   

(6) 

(5) estimates whether or not a sensor is exposed to a 
single light source that is turned on. The function isON 
converts the value of light intensity into a true false value. 

(6) applies a logical OR function on all results from (5), 
which are the states of all light sources visible by this sensor. 
This means that one light source that is ON is enough to 
activate the light sensor.  

It is relevant to note that the prediction engine is able to 
use, at the same time, entities described in different level of 
details. As a matter of fact, at run-time the prediction engine 
uses a matching technique to affect values to their proper 
parameters, in order to evaluate, first the “Ambient Light 

Law Set”, which is the most detailed law and thus with the 
highest priority. If it fails (for instance there are no 
coordinates defined for a sensor), it tries then to evaluate the 
law set with the next priority value, which is “Ambient Light 
On Off Law” by exploiting the available information. It is to 
be noted that this is one possible, and simplified, way to 
design the environment model for the light context. In fact 
we can imagine a more realistic definition of the Light Effect 
entity, which in addition would describe the heat emitted by 
the light source. There would be a “Heat Emission” effect 
that would contribute to a model determining the current 
temperature in the room. Another possible solution would be 
to add another effect such as “Heat Effect” that will have as 
property “Heat Emission” the latter will be used in the same 
way by the set of laws for ambient temperature fault 
detection. This possibility to have multiple solutions shows a 
flexibility provided by our approach that might be useful in 
other context of use. 

C. Instance Model 

Once the Concrete Model is properly set by the designer, 
the framework is ready to start the real time fault detection. 
Before that the model called “Environment Instances” 
composing the Environment's Dynamic Model (as showed in 
Figure 4) must be populated with the actual devices from the 
ambient environment, represented as instances of entities 
from the Concrete Model. The same triplet syntax is used by 
the context engine to create instances. Operator “is-a” allows 
the instantiation of an entity from the Concrete Model; 
entities of type Property in the Concrete Model are used as 
predicates to associate them to an instance and give them a 
value. For instance to declare a fluorescent light bulb (like 
the actual one in the living room) we use:  

Living RoomBulb 1 is-a Fluorescent Light Bulb; 

This instantiation links automatically “Living Room Bulb 1” 
to “Light Effect”, so by adding: 
Living RoomBulb1 value 1500;  

The value of “Light Intensity” of the “Light Effect” 
produced by this bulb is set to 1500 lm. The declaration of 
the sensors also links them directly to the corresponding 
“Measurable Property” that is “Ambient Light Intensity”. 
To define the value of the zone in which the latter bulb is in, 
the entity “Zone” defined in the environment model is used 
as a predicate:  
Living RoomBulb 1 Zone ‘ Living Room’;  

The model is then completed following the same logic. The 
complete dynamic model for our example, generated by the 
context engine, is the following: 
Living RoomBulb 1 is-a Fluorescent Light Bulb;  
Living RoomBulb 2 is-a Fluorescent Light Bulb; 
Living RoomBulb 3 is-a Incandescent Light Bulb; 
Bath RoomBulb 1 is-a Incandescent Light Bulb;  
Living RoomSensor 1 is-a Photo Transistor; 
Living RoomSensor 2 is-a Photo Diode CA; 
Bath RoomSensor 1 is-a Photo Resistor; 
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Figure 7.  Concrete Model (down) created from the Abstract Model (top) in the context of Light FDD 

Living RoomBulb 1 2DPosition (150,150); 
Living RoomBulb 1 Zone ‘ Living Room’;  
Living RoomBulb 1 value 1500;  
Living RoomBulb 2 2DPosition (50,350); 
Living RoomBulb 2 Zone ‘ Living Room’;  
Living RoomBulb 2 value 0;  
Living RoomBulb 3 2DPosition (50,50); 
Living RoomBulb 3 Zone ‘ Living Room’;  
Living RoomBulb 3 value 800;  
Bathroom Bulb 1 Zone ‘BathRoom’; 
Bathroom Bulb 1 value 1750; 

Living RoomSensor 1 2DPosition (250,50); 
Living RoomSensor 1 Zone ‘ Living Room’;  
Living RoomSensor 1 Tolerance 75.0; 
Living RoomSensor 1 value 0.0; 
Living RoomSensor 2 2DPosition (250,350); 
Living RoomSensor 2 Zone ‘ Living Room’; 
Living RoomSensor 2 Tolerance 33.0;  
Living RoomSensor 2 value 0.0; 
Bath RoomSensor 1 Zone ‘ Bath Room’; 
Bath RoomSensor 1 Tolerance 75.0; 
Bath RoomSensor 1 value 0.0; 

Note that the previous model is constantly updated via 
the context engine so a new instance can be introduced at 
any moment of the execution of the FDD task. It is also 
possible to add instances manually (by appending the 
previous model) by a user that can be the designer, an expert 
or the final user of the system. Note also that “Bath Room 
Bulb 1” and “Bath Room Sensor 1” does not have valid 

coordinate values; therefore the prediction engine will resort 
to using the ambient On/Off Law Set laws in order to predict 
the sensor’s readings. 

Now that all the instances are well defined, we can 
perform real-time fault detection. The values defined 
previously are in fact updated at run-time via the context 
engine, which, in general, plays the role of a gateway 
between the hardware devices and the FDD framework in 
order to continuously update what we called on Figure 4 the 
Environment's Dynamic Model. 

D. The Fault-Detection Task 

The fault-detection task consists in evaluating the 
calculated (theoretical) value of every “measurable property” 
supposed to be detected by a sensor. This is done via the 
prediction engine using the law sets defined in the 
environment model. The values are then compared to the 
values actually read from the sensors. If the values are 
outside the sensor’s tolerance margin then an inconsistency 
is detected. This inconsistency is most likely due to a faulty 
component. The faulty component is not identified at this 
stage; we only detect the existence of possible faults. 

Using our simulator we create the scenario described in 
Table 1. The simulator generates approximate readings for 
the sensors. These readings are compared with the predicted 
values (calculated via the prediction engine via the law sets) 
throughout a short scenario (15 seconds). In the table we 
trace the values every 5 seconds.  
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We suppose that at Time=10s the “Living Room Bulb 2” 
is turned on generating a “light effect” having the property 
“light intensity” of 1500 lm. Theoretically this should have 
increased the readings of “Living Room Sensor 1” from 0.95 
lm to 0.106 lm, and the readings of “Living Room Sensor 2” 
from 0.036 lm to 0.073 lm. Calculations from the prediction 
engine clearly reflect this rise in light intensity around the 
two light sensors exposed to the light emitted by “Living 
Room Bulb 2”. However, at 10 s the values of sensor 
readings did not change and stayed at 0.090 lm for “Living 
Room Sensor 1” and 0.034 lm for “Living Room Sensor 2”. 
Thus, by comparing the predicted value to the readings 
(considering tolerance values of the corresponding sensors), 
a fault is detected. 

In the Bathroom, since the only light sensor and the only 
light bulb there do not have coordinates, the prediction 
engine can only estimate the On/Off state of the sensor based 
on the On/Off state of the Bulb. The comparison between the 
actual On/Off state of the sensor and the calculated On/Off 
state do not detect any differences. 

TABLE I.  FAULT DETECTION SCENARIO 

Time 
[s] 

Sensors Readings 
[lm] 

Prediction Engine 
Calculations [lm] 

LivingRoo
mSensor1 

LivingRoo
mSensor2 

BathRoom
Sensor1 

LivingRoo
mSensor1 

LivingRoo
mSensor2 

BathRoom
Sensor1 

0 0.090 0.034 0.55 (ON) 0.095 0.036 ON 

5 0.090 0.034 0.55 (ON) 0.095 0.036 ON 

10 0.090 0.034 0.55 (ON) 0.106 0.073 ON 

15 0.090 0.034 0.55 (ON) 0.106 0.073 ON 

V. CONCLUSION 

In this paper, we introduced an original approach for the 
Fault Detection and Diagnosis of AmI systems; the method 
is based on the definition of the physical phenomena and 
exploiting the resulting models to simulate the system 
behavior; the comparison between the real system and the 
simulated system is the basis of the Fault Detection and 
Diagnosis approach. The FDD framework is composed of 
static models that are defined by the designer, following a 
predefined effect-based abstract model, to describe the 
diagnosed environment, dynamic models that represent the 
environment at run-time and two engines: the context engine 
that populates the dynamic models with the appropriate 
instances and the prediction engine that evaluates the 
expected readings of sensors. The approach is adapted to the 
dynamicity and openness of AmI systems since there is no 
predetermined relations between actuators and sensors (they 
are indeed deduced at run-time via the laws defining the 
physical phenomena), and objects can be added to the model 
at run-time. In addition this framework offers the freedom to 
choose the level of granularity in which the system is 
described, simply by using descriptions of physical 
phenomena at various levels of details. 

The Fault Detection part of the framework is complete, 
however Diagnosis (isolating the fault and finding out its 
cause) is yet to be detailed. As future work we envision to 
fully describe the diagnosis part of the FDD framework. 
Moreover, the current framework uses models describing 

mainly the structure (entities and relations between them) of 
the diagnosed environment, so to improve FDD results we 
plan de describe the behavior of system components, for 
instance using finite state machines. Finally, real-scale tests 
in an experimental ambient environment will be carried out 
in order to validate the diagnosis framework in real scale. 
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