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Abstract—Ambient intelligence (Aml) systems are smart
interactive systems that perceive their surrounding using
sensors and act upon them using actuators. One dfie most
common applications of such systems is Smart Homds. this
context, the ambient system can offer a great levebf
dependability if it is able to exploit available sesor data in
order to autonomously perform diagnosis. However, mbient
environments are dynamic in a sense that componentsn
general, and actuators and sensors, in particulacan be added
or removed from the system at run-time. This dynangity
raises new challenges not addressed in the statetbe art of
fault detection and diagnosis techniques. Unlike aksical
control theory methods, control-loops between ambig system
components cannot be pre-determined at design timén this
paper we propose a new approach based on the moawgji of
physical phenomena, allowing one to use availablesources to
predict the values that are supposed to be read bgensors.
Comparing the predictions and the real readings atiws us to
detect potential faults. Fault detection may be fédwed by fault
isolation, which tries to identify the faulty compament precisely.

Keywords-Ambient intelligence; ubiquitous systems; sensor;
actuator; fault detection; diagnosis; ontology; physical law;
Smart Home; Pervasive Computing.

l. INTRODUCTION

Ambient intelligence (Aml) refers to interactivessgms
in which the processing and interaction capabilitere
embedded into everyday objects. Such systems act tine
environment using actuators and
surroundings using sensors. The main objectivenoAl
environment is to address the needs and preferaricie
user. Applications range from enhancing everydfeythsks
to monitoring and guaranteeing patients’ safetihdspitals.
To ensure the achievement of their goals, ambigstems
depend strongly upon the proper conduct of tasks dine
performed by actuators.

In this context we want to endow such systems toiths

allowing them to check autonomously whether or no

systems tasks are performed properly. As a maftéaab,
when an ambient system sends out orders to antacttize

proper way to verify whether an order has been wrec
properly is to exploit the sensors’ readings ineorh ensure

that the state of the environment has changed pescted.
For instance, when the system activates a lighb,btlde
hardware

transmitted properly and that the electric cirafithe light

they perceive the

infrastructure and communication cap#sli
allow the system to verify whether the order hagrbe
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bulb has been closed. However, the light bulb cddsie
been damaged and so it would not be lit property.t®
verify that the light has really been switched b readings
of the proper light sensors must be considered. New
challenges arise: first selecting relevant sengoese light
sensors), second selecting only sensors that gesed to
the actions of specific actuators (here light sensxposed
to the light emitted by a given light bulb). A sttun to that
from control theory consists in pre-determining seld
control loops using ad-hoc sensors. However, onghef
main particularities of ambient systems is that]iken
traditional systems, physical resources (mainlyssenand
actuators) are not necessarily known at design. timéact
they are dynamically discovered and may appearoand/
disappear at run-time, so the solution using pterdgned
control loops cannot be adopted in such open emviemts.

We propose a solution that allows the automatic and
dynamic construction of links between actuators sersors
in ambient systems by exploiting available resosirae a
given time, and using them to perform fault detactand
diagnosis (FDD) at run-time. The approach is basedhe
modeling of the physical phenomena (that we efidicts)
expected to occur in the environment when a givenasor
is activated. Effects are characterized by phydeak that
can be modeled at various levels of details. THeses
depend on physical parameters associated withtacsuand
sensors types. By exploiting modeled informationd an
physical laws, the system is able to automaticaliyate
ﬁlssociations between actuators and sensors. Then by
performing the proper calculations, the system deslithe
measurement expected from a given sensor whentancer
action is performed by an actuator (for instancenareased
temperature level may be expected within a certaime
lapse when a heating system is activated).

This way, the system is able, first by comparingsth
calculated values with the actual sensors readiogdetect
the existence of faults (fault detection), thenrbgsoning

over a diagnosis model, to produce an accuratendsg

(finding the fault source, which could come eitlfrem the
actuators or from the sensors themselves) at no@-tiithout
requiring the explicit coupling of actuators anchs@s at
design time. The relations between the actual commptis
are entirely deduced at run-time from the charésties of
actuator and sensor types. Therefore it is welptthto the

¢ openness of ambient systems.

This paper is organized as follows. Section 2 state of
the art of some existing diagnosis techniqueshénfields of
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automatic control and Aml. Section 3 describes fawit
detection and diagnosis approach. Section 4 showsthis

approach may be applied to a complete fault detecti for

example illustrated using our diagnosis simulatenally,
the conclusion highlights some directions for fetwrork.

Il.  STATE OF THEART

Fault detection and diagnosis first appeared irfithe of
automatic control, in which
mathematically in the form of differential equatioror their
equivalent transformed formulations [1]. Many wottkave
been done in the field of automatic control to ioye
system reliability; generally the resulting systeare fault
tolerant systems. However, the systems in autongatitrol
are usually pre-defined: manufacturing systems as@g of
machine tools, robots, transportation systems dlirdedined
household appliances. These systems do not exoilrie of
the particularities of ambient systems such as miyeity
(devices are continuously changing states, reaudaiges,
positions, adapting to the context etc.), high togfeneity of
devices, and openness (adding or removing devicesna
time) [2]. In the field of automatic control, faudetection
and diagnosis consist of three main tasks:

e Fault detection: finding out if something is not

working as expected in the diagnosed system.
¢ Faultisolation: finding the cause of a detectadtfa

be very critical as Aml systems are becoming irgiregdy
autonomous and complex. That is why many infrasires
pervasive computing, incorporate fault-tolerant
mechanisms. Examples include the Context Toolkjt4bra

[6], Solar [7], ConFab [8] and Gaia [9]. These eyt
provide system-level mechanisms for monitoring &agibn
components and address particular issues that amise
pervasive computing contexts such as management of

systems are modeledheterogeneous resources and distributed computing.

particular the prototype of Gaia implements someltfa
tolerance mechanisms, and it has been extendedsaiitte
fault handling techniques [10]. These mechanisnotudte
heart-beat-based status monitoring, redundant gicowng
of alternate services and/or applications, andrtsy failed
application components. Different failure reasongrev
identified [9] and classified [10]: components anddervices
failing due to low battery power, physical damagetwork
disconnections or Quality of Service (Qo0S) probleeusd
Byzantine failures caused by deliberate attacks tlom
application. [11] introduces a recovery model fontext-
aware environments. However it focuses on recogeriom
design errors at the application level (namely abiEnding
failures), and not on resilience to physical fagkr

In our approach we are more interested in a moasbdb
FDD technique, which is a technique based on aesyst
description that is used to define the behavioreath

«  Fault identification: determining the nature andCOmponent within the system and the connectionwemst

magnitude of a fault.

Fault detection and isolation are the most impadrtasks in
fault detection and diagnosis systems. Fault igslagnd
fault identification are usually referred to togathas fault
diagnosis. Fault identification, even though usefid
sometimes ignored as the effort it requires iswotth the
resulted information. In this paper we introdudeaanework
that focuses mainly on fault detection and isofatio the
field of Aml systems.

Note that since Aml systems are user-centerednd&g
can refer to two kinds of tasks: (i) user-behawd@gnosis,
which corresponds to verifying whether the usergraperly
done his/her expected task, (ii) system-behaviagrbsis,
consisting of verifying whether the system actuatbave
performed their task properly. Many techniquesproposed
for user-behavior diagnosis, especially in the dfiedf
Ambient Assisted Living (AAL); the approach consish
gathering user data (behavior, preferences, etcorder to
apply machine learning techniques [3] to detechzalies in
user behavior. In this paper we focus on fault c&e and
isolation of system behavior only.

these components [12]. The technique consistamnlating
the system’s behavior and reasoning over the systedel.
Obtained information is used to compare the explecte
system behavior with the actual system behaviat,thuas to
detect faults. The major challenge of this techaigs
combinatorial explosion which makes the approactliess
for devices composed of a considerable number of
components [13]. We claim that we can overcome this
problem by describing, at the fault-detection taskly
system components and structure but not the behaMie
system’s behavior, however, could be used at thidt fa
diagnosis task to isolate the component whose l@hav
caused the fault. Another technique that is basedhe
description of the system’s behavior is [2hich deals with
context aware adaptive applications where adaptai$o
defined via a set of rules. The technique consists
transforming the rule set into a formal finite-stahodel.
Algorithms are then proposed to analyze the figitde
model in order to detect adaptation faults. Thereggh is
different from ours since they compare system statan
already established set of adaptation fault patteniereas

In additon to the particularites of Aml systems W€ dynamically deduce faults by comparing the reaild

mentioned earlier, one of the main challenges obiam
environments is that services, whose goal is gépeta

satisfy user’s preferences by performing a spetifk, are

executed in the background such that they are igeaditle
by the user. This requirement causes some difiésutor

fault detection because a non-intrusive system aann

decently flood the user with a large number oftfdetection
data. Conversely, users uninformed of detectedsfanhy
continue to rely on failed services without notgifThis can
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state to the model dynamically at run-time.

In other works, such as [2], there have been ateap
address the diagnosis problem in Aml using senstworks.
The technique consists in detecting faults withisessor
network by applying a fuzzy logic data fusion ammto
using a Statistical Process Control and a clusteogdriance
method [15]. We adopt another approach in whictdwaot
rely on machine learning, instead we base our @ghraon
the proper modeling of the diagnosed system. Modsts



then used at run-time to dynamically draw conclusiabout To better explain our approach we will look at #BD
the proper operation of the system. framework from two perspectives; (i) the FDD Franoew
In general, we notice that regardless of the amgie® Models (see Figure 3 and 4), which describes thg tiva
proposed in existing work, it is always supposed fensors ambient environment and its components are modeitbéh
and actuators, whether they are represented indelnty  the framework, and (ii) the general structure apdrations
not, are somehow directly linked. In other words th of the FDD framework (see Figure 5), in particutaw the
diagnosis system explicitly contains the relatigpsh models defined in (i) are exploited by the FDD feamork.
between actuator actions and sensor states. Wa ¢heit

building such explicit links is poorly adapted tagly sensor 1| | Actuate 1
dynamic and open ambient systems. Indeed, as desiee Ambient Environment sensor 2| [ actuator 2
added to and removed from an ambient environmenirat : ;

time, it is very difficult for the system desigrterthoroughly

describe, at design time, how the system will becstired at

]
runtime. For these reasons, we introduce our aphroa ponents/ 1 | Environment ! __
. . ! (Sensors & Abstract Model Diagnosis Model
allowing the decoupling of actuators and sensorghiz saters il I
model, while enabling the deduction of the linksvieen mercept|  MT— 17777 Uee _ _
: System 1| Environment
them at run-time. Events I|  concrete 1 !
1 Model Dlagr!osw 1
ll.  OURAPPROACH = Ename /|
Context "\ Populatd [—— i i .
Engine Environment | n X
A. Overview || Instances | || _ FaultDetectin _ 11 FaultDiagnosis
In this section we detail our Fault Detection and Yl
Diagnosis framework for ambient environments. Wt diy FDD Framework
introducing the context of use of the frameworkFlgure 1,
the FDD framework is situated within the contexteofeal Figure 1. The FDD Framework Achitecture in the Aml context
ambient system. The latter's most important comptse
that are necessary to the operation of the FDD dveornk, has property input / output

are actuators and sensors. These components, thad o Ambi Obiect|L Property Law
entities described later, are modeled in ordereidopm the $

Fault Detection and Diagnosis Tasks. As illustrateBigure
1, the FDD framework relies mainly on an environmen

i detects
?12?2’2(?;5 ror}otﬂgl’lattaer: environment - concrete mOdeI’ an Actuator WlMeasurable Property| |EffectProperty|

Theenvironment abstract model is detailed in Figure 2. It has effect property|
defines the structure of the environment model wag that produces [Effect
enforces the decoupling of sensors and actuatads levels.

This is achieved by introducing the concept of @ffevhich Figure 2. Abstract Model

is a modeling of the physical consequence(s) ofatti®ns
of actuators onto the environment. The Abstract &ldd B. The FDD Framework General Architecture
further discussed in Subsection C. ) _ _

The environment concrete model follows the general This part describes the FDD Framework accordirtym
structure of the abstract model and defines semsur Perspectives; a conceptual point of view (Figuignd 4), in
actuator types, the expected physical effectsafipropriate  Which we describe the models used by the FDD fraonew
physical laws and the relations between all thetigies. and an architectural point of view, Figure 5, inisthwe

An environment instance is created at runtime by the describe the FDD framework’s architecture, operatiand
context engine that intercepts system events and signals. 14S€ of models.
contains the actual sensors and actuators as svidleaactual 1) Models used by the FDD framework
values of effects produced by actuators and reashgors. In order to the FDD Framework to perform the Fault

Because the models of a particular Aml systemvala  Detection and Diagnosis tasks it uses informatiemfthe
common abstract model, it is exploitable by frediction ~ following models: .
engine, responsible for deducing the values expected to be ¢ The Environment's Static Model

read by the sensors. Comparing these values wétladtual *  The Environment's Dynamic Model
sensor readings makes it possible to perform etk ction. e The Diagnosis Model
Then, using thediagnosis model, the diagnosis engine is In Figure 3, the “use” relation between the models

responsible for isolating these faults and deteimgiexactly  describes in fact the way the FDD framework uses

what components are responsible for them. In tHewing information from one model to construct the othEar

subsections, we discuss the different models comgair  example, as explained earlier, the FDD frameworksus

FDD framework and the fault detection tasks. information from the static model in order to pagel the
dynamic model (create environment instances).
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The Diagnosis Model is used to achieve fault isotat
Therefore its nature is completely dependent ontype of
Diagnosis Engine used. We neither restrict thegafdault
isolation techniques, nor the nature of the diagno®del to
be used. In all cases however, the FDD framewoes tise
static model to build or complete the Diagnosis klod

Environment's
Static Model

usy' Nse

Environment's Diagnosis
Dynamic Model Model

Figure 3. The FDD Framework Models

Environment
Abstract Model

1

Environment
Concrete

. . Model
Environment's
Static Model [

Environment
Instances

Environment's
Dynamic Model

Figure 4. The FDD Framework Models’ Hierarchy

Hardware
(Actuator/Sensor)

Context
Engine

Information

FIow’

Environment's
Static Model

Diagnosis
Engine

1

Diagnosis
Model

Prediction
Engine

Environment's
Dynamic Model

Figure 5. Run-time Architecture of the FDD framework

2) Architecture of the FDD framework

information contained in the Dynamic model (Actual
Instances and their values) are used by the Pimdlict

Engine to calculate the expected values of sensors.
Simple comparison between predicted values and real

readings of sensors allows us to detect probablesfa

iii) These conclusions (probable faults) with the calad
values, information from the Static Model, informoat
from the Dynamic Model and information from the
Diagnosis Model are exploited by the Diagnosis Bagi
to perform Fault Isolation. This completes diageosi

C. TheFDD Framework Models

In this part we show how the abstract model allows
to model the ambient environment while enforcing th
decoupling of actuators and sensors at design time.

As shown in Figure 4, the environment model can be
divided into two main parts: a static one and aadhyic one.
The static model contains (i) the abstract model composed of
generic entities, namely Actuator, Sensor, Effettt, and (i)
the concrete model that specializes and concretizese
entities (Light Sensor, Sound Actuator, etc.). Abbus
produce Effects, which have Effect Properties (FégQ).
Sensors detect Measurable Properties. Laws redlatkeae
kinds of Properties in order to model physical mimana.
Using laws it is possible to estimate the valuggaed by
the Sensors. Thidynamic model contains the actual instances
of sensors and actuators present in the physieaoament.

It stores the current state of the environmentggeralues,
actuator commands) and it is kept updated at roe-ti
Section 0 explains how this model is populated githted.

Let us see how this works on a concrete environment

model, corresponding to a lighting system (Figuye The
abstract Sensor entity is concretized as a Lighs&eentity
(or a specific Light Sensor Type), the abstractuattr entity
as a Light Bulb (or a specific Light Bulb Type). ghi

Sensors and Light Bulbs share an Ambient Propehigiwis
the Zone in which they are located (for examplertame of
the room). A Light Sensor can detect a light lgahbient
Light concretizes Measurable Property). Likewisel.ight

Bulb produces a Light Effect (concretization of eff)

which is characterized by a Light Intensity (coniaagion of
Effect Property). A corresponding set of Laws istamtiated
in order to calculate the value of the Light Inignsround
the Light Sensor entity.

The calculations will use properties such as th&tiom
of the Light Bulb and the Light Sensor to determihe

The operations of the FDD Framework depend on whiclidistance between the two components, the lightngite
model from the FDD Framework Models is handled.SEhe emitted by the Light Bulb to determine the receivigdht

models are exploited by engines in order to dedacé
detection and diagnosis conclusions. The generatime
behavior of the framework, as shown in Figure 5 be
summarized by these steps:

i) The Context Engine uses information from

intensity. A combination law can be used if thesemore
than one Light Bulb emitting light toward the LigBensor.
It is important to note here that our approach doet
impose a level of detail for the physical lawsislup to the

thedesigner to choose the relevant level of granylahitdeed

hardware layer and from the Environment's Staticone can imagine a different modeling for our examiih

Model to properly instantiate the real world obgect

which the effect of light is represented by a Baolevalue

i) Information contained in the Environment's Static(light absent — light present). This freedom to ad® the
Model (Physical Laws to apply and/or Deduced Linkslevel of granularity is well adapted to Aml systesiace
between Different Types of Actuators and Sensard) a their use in real world varies according to contéMe can
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imagine a smart home design for people with hearindighting system. The Concrete Model is defined gsin
impairment in which the modeling of the effect otiads is  textual triplet-based syntax. For instance to @efire sensor
very detailed in order to enhance the percepticsoahd. type “Photo Transistor” the syntax is:

Photo Transistor is-a Sensor;
Where “Sensor” is the Entity defined in the Abstrisiodel.

And to describe the relation between “Photo Traosisnd
the detected entity “Ambient Light Intensity” thgnsax is

IV. LIGHT SYSTEM FDD EXAMPLE

In this section we present an illustrative examipie
which we show how our FDD framework could be
integrated into a real Aml environment. We suppbse our

4 X X ! : the following:
ambient environment is a smart home, in which waugo Ambient Li htgl tensity i Ve b Provert
ikt i ient Lig ntensity is-a asurable Property;
only on the lighting system. The living room ande th Photo Transistor detects Ambient Light | ntensity;

bathroom are equipped with the following devices: i ] ] ) ]
« In the living room: Where “Ambient Light Intensity” is defined as a

o Three light bulbs: two are 23 W fluorescent light Measurable Property” and where “detects” is a trefa
bulbs generating 1500 Im each, and one is a 60 Vgeﬂned in the abstract model as the link betwetities of

; : : type “Sensors” and entities of type “Measurableperty”.
incandescent light bulb generating 800 Im. ; X !
. . - . . This syntax is used to describe all of the Condkédelel
0 Two light sensors: one. IS a photo transistor (W'thdepicted on Figure 7. The entities defined in tlendCete
accuracy of +75% [16]; it is from these accuracy

values that we determine the tolerance value foh ea rl\Tll]gggll).are the following (in bold, types from thestct

sensor type) and the other is a photo diode with &  gengors Photo Transistor, Photo Diode, Photo Resistor.
current amplifier (with accuracy of +33%; called Actuators: Fluorescent-, Incandescent Light Bulb.

“Photo Diode” for short in the rest of the example) Properties:
* In the bathroom: Tolerance: A property for Sensors. It will be instantiated
0 A 100 W incandescent light bulb of 1750 Im. for Photo Transistors and Photo Diodes, which have
0 A light sensor of type photo resistor (accuracy notolerance values, but not for Photo Resistors. Wddae of
guaranteed). tolerance of each sensor will be considered at ttkction
The approximate positioning of these components istage as the threshold for error margin.
illustrated in Figure 6 (the exact x,y coordinates defined Zone: is a property for all actuators and sensors that

later in the dynamic model; origin is at the tofp t®rner and indicates the name of the room in which they acatied.
distances are in centimeters). The transpareriesiaround Two objects not in the same room are not suppasedfect
actuators have diameters proportional to the prediléght  each other as far as light is concerned.
Intensity. Their only purpose is to allow one toicily 2D Position: is a property for all actuators and sensors
compare between actuator effects values. The doteakity  that is represented by the coordinates of each coemp;
value is written under the actuator type pictutee intensity however some actual instances may be without coates.
values read by the sensors are written after tagires. Measurable Property. Ambient Light Intensity, an entity
A The Smulator that models the expected readings of each Light&@en
: Effect: Light Effect, which is the main effect that is
To implement the example we use a simulator that wgroduced by the light actuator. By definition tHistity is a
have developed in Java (see Figure 6 for a scregnsh description of the physical phenomena observed as a
LivingRoomBulb3 _ LivingRoomSensor1{0.0) consequence of the actions of actuators on the emmnbi
i} \ environment. In this context it is a descriptiontbé light
BathroomBulbl .. . .

800.0 emission phenomena observed when a Light Bulb.is on
LivingRoomBulb1 i1} Effect Property: Light Intensity, which is a property of
¢ s the Light Effect. It contains the specific value tbe light
15000 intensity of the Light Effect produced by each tigltuator.

Law:
BathroomSensori(L1) Ambient Light Law Set: this entity contains a set of laws,
\ expressed as mathematical functions, that allowstous
LivingRoomBulb2  LivingRoomSensor2(12.5) estimate the value of “Ambient Light Intensity” theach
‘ P sensor is supposed to detect. The functions useydiom
0.0 b other entities and results from other functionshimitthe
Figure 6. The Aml Environment as presented in the simulator same law set to perform calculations. The functemes

SameZone s, =( Zone == Zone(y, ) (1)

B. Environment Model Distance () =

On Figure 4, the Environment's Static Model was |+ if SameZone s, .==fal se 2
described as composed of an Abstract Model andnarét |Sarl( X - Xa ) 2+( Y - Yo ) 2] ot hervi se )
Model. Figure 7 shows how the Concrete Model is . .
structured, based on the Abstract Model, in theeodrof the Sqrtis the square root function
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Direct Light Exposure (qa = 3)
Light Intensity  / Distance (a °
Ambient Light | ntensity ) = (4

Y@ [ Direct Light Exposure (s, ]

(1) verifies whether or not a sensor and an actuaina
the same zone.

(2) uses the x,y coordinates to calculate the distéince
centimeters) between an actuator and a sensoarat the
same zone. This function returns an infinite distamalue
when the two objects are not in the same room.

(3) estimates the light intensity value at a light ssen
when exposed to a single light source positioneal @rtain
distance (calculated fronf2)) and generating a certain
luminous flux. The input parameter luminous flux tre
effect property that ensures th@), and consequently the
whole ambient light law set, only considers actistinat
produce light effect.

(4) calculates the sum of all the results fr(8) which is
the sum of the light intensities caused by eacllsitight
source on this paticular light sensét) is the function that
calculates the final theoretical value of the mealsie
property ambient light intensity around a sensohe T
comparison of this value with the actual readinthefsensor
is the basis of the fault detection task.

In reality when instantiating actual objects frofme t
hardware layer into the model, it is possible tibttaobtain
the coordinates of the object (if no location seeviis
available). In that case the “Ambient Light Law 'S&t
unusable. For that case we define another instahdéaw
that is adaptable for the new (lower) level of detim which
some components are described:

Ambient Light On Off Law Set: is a set of laws that is
used when the coordinates of an object involvethénfault
detection and diagnosis are unknown. In that casepply
Boolean functions to determine the expected semesmting.
The functions are:

SameZone s, =( Zone == Zone(y ) (1)
Boolean Direct Light Exposure s, = (5)
SameZone s, & iSON( Light I ntensity ()

Boolean Muiltiple  Light Exposure ¢ = (6)

OR(Boolean Direct Light Exposure (s )

Law Set”, which is the most detailed law and thuthwthe
highest priority. If it fails (for instance thererea no
coordinates defined for a sensor), it tries theavaluate the
law set with the next priority value, which is “Ament Light
On Off Law” by exploiting the available informatioft is to
be noted that this is one possible, and simplifigdy to
design the environment model for the light contémtfact
we can imagine a more realistic definition of thgHt Effect
entity, which in addition would describe the heaiitted by
the light source. There would be a “Heat Emissiefféct
that would contribute to a model determining theremnt
temperature in the room. Another possible solutionld be
to add another effect such as “Heat Effect” thdt dve as
property “Heat Emission” the latter will be usedtlire same
way by the set of laws for ambient temperature tfaul
detection. This possibility to have multiple sotuts shows a
flexibility provided by our approach that might beeful in
other context of use.

C. Instance Mod€

Once the Concrete Model is properly set by thegiesi
the framework is ready to start the real time falitection.
Before that the model called “Environment Instaiices
composing the Environment's Dynamic Model (as slibiwe
Figure 4) must be populated with the actual devicas the
ambient environment, represented as instances tifesn
from the Concrete Model. The same triplet syntaxsisd by
the context engine to create instances. Operaea™allows
the instantiation of an entity from the Concrete ddlp
entities of type Property in the Concrete Model ased as
predicates to associate them to an instance amdtigem a
value. For instance to declare a fluorescent Iighib (like
the actual one in the living room) we use:

Living RoomBulb 1 is-a Light Bulb;

This instantiation links automatically “Living RooBulb 1”
to “Light Effect”, so by adding:

Living RoomBulbl value 1500;

The value of “Light Intensity” of the “Light Effett
produced by this bulb is set to 1500 Im. The detian of
the sensors also links them directly to the coordmg
“Measurable Property” that is “Ambient Light Intetys.

To define the value of the zone in which the laltelb is in,
the entity “Zone” defined in the environment modelused
as a predicate:

Fluorescent

(5) estimates whether or not a sensor is exposed to dving RoomBulb 1 Zone* Living Room’;

single light source that is turned on. The functis®N
converts the value of light intensity into a traésé value.

(6) applies a logical OR function on all results fr¢s),
which are the states of all light sources visibletis sensor.
This means that one light source that is ON is ghoto
activate the light sensor.

It is relevant to note that the prediction engisable to
use, at the same time, entities described in dfffelevel of
details. As a matter of fact, at run-time the pcédn engine
uses a matching technique to affect values to theiper
parameters, in order to evaluate, first the “Ambikight
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The model is then completed following the samedoghe
complete dynamic model for our example, generatethe
context engine, is the following:

Living RoomBulb lis-a  Fluorescent Light Bulb;
Living RoomBulb 2is-a  Fluorescent Light Bulb;
Living RoomBulb 3is-a | ncandescent Light Bulb;
Bath RoomBulb 1 is-a I ncandescent Light Bulb;

Photo Transistor;
Photo Diode CA;
Photo Resistor;

Living RoomSensor 1 is-a
Living RoomSensor 2 is-a
Bath RoomSensor 1 is-a



has property input / output
| fproperty € (i) |
| T T s
I
detects |
| |Actuator |SensorH|Measurable Property| |Effect Propertyl/‘ |
A A JiN ~
| has effect propertj |
d :l
| produces 'Eect
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Figure 7. Concrete Model (down) created from the Abstract Bldtbp) in the context of Light FDD

RoomBulb 1 2DPosition (150,150);
RoomBulb 1 Zone* Living Room’;
RoomBulb 1 value 1500;

RoomBulb 2 2DPosition (50,350);
RoomBulb 2 Zone* Living Room’;
RoomBulb 2 value 0;

RoomBulb 3 2DPosition (50,50);
RoomBulb 3 Zone* Living Room’;
RoomBulb 3 value 800;

Bathroom Bulb 1 Zone ‘BathRoom’;
Bathroom Bulb 1 value 1750;

Living
Living
Living
Living
Living
Living
Living
Living

RoomSensor
RoomSensor
RoomSensor
RoomSensor
RoomSensor
RoomSensor
RoomSensor
RoomSensor

1 2DPosition (250,50);

1 Zone® Living Room’;
1 Tolerance 75.0;

1 value 0.0;

2 2DPosition (250,350);
2 Zone' Living Room’;
2 Tolerance 33.0;

2 value 0.0;

Bath RoomSensor 1 Zone * Bath Room’;
Bath RoomSensor 1 Tolerance 75.0;
Bath RoomSensor 1 value 0.0;

Note that the previous model is constantly updated
the context engine so a new instance can be intextat
any moment of the execution of the FDD task. lalso
possible to add instances manually (by appendirg
previous model) by a user that can be the designeexpert
or the final user of the system. Note also thatthBRoom

coordinate values; therefore the prediction engiilleresort
to using the ambient On/Off Law Set laws in oradeptedict
the sensor’s readings.

Now that all the instances are well defined, we can
perform real-time fault detection. The values dedin
previously are in fact updated at run-time via twatext
engine, which, in general, plays the role of a wate
between the hardware devices and the FDD framework
order to continuously update what we called on FEguthe
Environment's Dynamic Model.

D. The Fault-Detection Task

The fault-detection task consists in evaluating the
calculated (theoretical) value of every “measurgiotperty”
supposed to be detected by a sensor. This is denthe
prediction engine using the law sets defined in the
environment model. The values are then comparetheo
values actually read from the sensors. If the wlaee
outside the sensor’s tolerance margin then an Bistamcy
is detected. This inconsistency is most likely tlue faulty
component. The faulty component is not identifiecthas
stage; we only detect the existence of possiblistau

Using our simulator we create the scenario desdribe
Table 1. The simulator generates approximate rgadiaor

ththe sensors. These readings are compared withréliecied
values (calculated via the prediction engine vialdw sets)
throughout a short scenario (15 seconds). In thie tave

Bulb 1" and “Bath Room Sensor 1" does not havedvali trace the values every 5 seconds.
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We suppose that at Time=10s the “Living Room Bulb 2 mainly the structure (entities and relations betwieem) of

is turned on generating a “light effect” having teperty
“light intensity” of 1500 Im. Theoretically this ehld have
increased the readings of “Living Room Sensor &irfr0.95
Im to 0.106 Im, and the readings of “Living RoormSer 2"
from 0.036 Im to 0.073 Im. Calculations from thegtiction
engine clearly reflect this rise in light intensityound the
two light sensors exposed to the light emitted hivihg

the diagnosed environment, so to improve FDD resuk
plan de describe the behavior of system compondots,
instance using finite state machines. Finally,-sealle tests
in an experimental ambient environment will be iearrout
in order to validate the diagnosis framework irl seale.

ACKNOWLEDGMENT

Room Bulb 2". However, at 10 s the values of sensor This work has been performed within the CBDP piipjec

readings did not change and stayed at 0.090 ImiLfging
Room Sensor 1” and 0.034 Im for “Living Room Sengbr
Thus, by comparing the predicted value to the regi
(considering tolerance values of the correspondergsors),
a fault is detected.

In the Bathroom, since the only light sensor arelahly
light bulb there do not have coordinates, the [ptemh
engine can only estimate the On/Off state of tms@ebased
on the On/Off state of the Bulb. The comparisomieen the
actual On/Off state of the sensor and the caladil&@e/Off
state do not detect any differences.

TABLE I. FAULT DETECTION SCENARIO
Sensors Readings Prediction Engine
Time [Im] Calculations [Im]
[s] LivingRoo LivingRoo BathRoom LivingRoo| LivingRoo BathRoom
mSensorl mSensor2| Sensorl 'mSensorl mSensor2| Sensorl
(0] 0.090 0.034  0.55 (ON)0.095 0.036 ON
5 0.090 0.034  0.55 (ON)0.095 0.036 ON
10 0.090 0.034 0.55 (ON) 0.106 0.073 ON
15 0.090 0.034 0.55 (ON) 0.106 0.073 ON

V. CONCLUSION

In this paper, we introduced an original approawttiie
Fault Detection and Diagnosis of Aml systems; thethod
is based on the definition of the physical phencanand
exploiting the resulting models to simulate the tsys
behavior; the comparison between the real systeuntlaa
simulated system is the basis of the Fault Detectind

Diagnosis approach. The FDD framework is composed o

static models that are defined by the designelpviihg a
predefined effect-based abstract model, to desctitee
diagnosed environment, dynamic models that repteben
environment at run-time and two engines: the cdreagine
that populates the dynamic models with the appabgri
instances and the prediction engine that evaludbes
expected readings of sensors. The approach iseatiapthe
dynamicity and openness of Aml systems since ther®
predetermined relations between actuators and ie(tbey
are indeed deduced at run-time via the laws defirilre
physical phenomena), and objects can be added tmdidel
at run-time. In addition this framework offers theedom to
choose the level of granularity in which the systém

a project co-funded by the European Union. Eurape i
involved in Région lle-de-France with the European
Regional Development Fund.
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