
Reference: Ahmed Mohamed, Christophe Jacquet and Yacine Bellik, "A fault Detection and Diagnosis Framework for Ambient Intelligent

Systems". The Ninth IEEE International Conference on Ubiquitous Intelligence and Computing (IEEE UIC 2012), Sep 2012. pp. 394-401. The IEEE.

A fault Detection and Diagnosis Framework for Ambient Intelligent Systems

Ahmed Mohamed / Christophe Jacquet
SUPELEC Systems Sciences (E3S)
Department of Computer Science

3 rue Joliot-Curie, 91192 Gif-sur-Yvette Cedex, France
{Ahmed.Mohamed; Christophe.Jacquet}@supelec.fr

Yacine Bellik
LIMSI-CNRS

Bât 508, B.P 133
91403 Orsay Cedex, France

Yacine.Bellik@limsi.fr

Abstract—Ambient intelligence (AmI) systems are smart
interactive systems that perceive their surroundings using
sensors and act upon them using actuators. One of the most
common applications of such systems is Smart Homes. In this
context, the ambient system can offer a great level of
dependability if it is able to exploit available sensor data in
order to autonomously perform diagnosis. However, ambient
environments are dynamic in a sense that components, in
general, and actuators and sensors, in particular, can be added
or removed from the system at run-time. This dynamicity
raises new challenges not addressed in the state of the art of
fault detection and diagnosis techniques. Unlike classical
control theory methods, control-loops between ambient system
components cannot be pre-determined at design time. In this
paper we propose a new approach based on the modeling of
physical phenomena, allowing one to use available resources to
predict the values that are supposed to be read by sensors.
Comparing the predictions and the real readings allows us to
detect potential faults. Fault detection may be followed by fault
isolation, which tries to identify the faulty component precisely.

Keywords-Ambient intelligence; ubiquitous systems; sensor;
actuator; fault detection; diagnosis; ontology; physical law;
Smart Home; Pervasive Computing.

I. INTRODUCTION

Ambient intelligence (AmI) refers to interactive systems
in which the processing and interaction capabilities are
embedded into everyday objects. Such systems act upon the
environment using actuators and they perceive their
surroundings using sensors. The main objective of an AmI
environment is to address the needs and preferences of the
user. Applications range from enhancing everyday life tasks
to monitoring and guaranteeing patients’ safety in hospitals.
To ensure the achievement of their goals, ambient systems
depend strongly upon the proper conduct of tasks that are
performed by actuators.

In this context we want to endow such systems with tools
allowing them to check autonomously whether or not
systems tasks are performed properly. As a matter of fact,
when an ambient system sends out orders to an actuator, the
proper way to verify whether an order has been executed
properly is to exploit the sensors’ readings in order to ensure
that the state of the environment has changed as expected.
For instance, when the system activates a light bulb, the
hardware infrastructure and communication capabilities
allow the system to verify whether the order has been
transmitted properly and that the electric circuit of the light

bulb has been closed. However, the light bulb could have
been damaged and so it would not be lit properly. So to
verify that the light has really been switched on, the readings
of the proper light sensors must be considered. New
challenges arise: first selecting relevant sensors (here light
sensors), second selecting only sensors that are exposed to
the actions of specific actuators (here light sensors exposed
to the light emitted by a given light bulb). A solution to that
from control theory consists in pre-determining closed
control loops using ad-hoc sensors. However, one of the
main particularities of ambient systems is that, unlike
traditional systems, physical resources (mainly sensors and
actuators) are not necessarily known at design time. In fact
they are dynamically discovered and may appear and/or
disappear at run-time, so the solution using pre-determined
control loops cannot be adopted in such open environments.

We propose a solution that allows the automatic and
dynamic construction of links between actuators and sensors
in ambient systems by exploiting available resources at a
given time, and using them to perform fault detection and
diagnosis (FDD) at run-time. The approach is based on the
modeling of the physical phenomena (that we call effects)
expected to occur in the environment when a given actuator
is activated. Effects are characterized by physical laws that
can be modeled at various levels of details. These laws
depend on physical parameters associated with actuators and
sensors types. By exploiting modeled information and
physical laws, the system is able to automatically create
associations between actuators and sensors. Then by
performing the proper calculations, the system deduces the
measurement expected from a given sensor when a certain
action is performed by an actuator (for instance, an increased
temperature level may be expected within a certain time
lapse when a heating system is activated).

This way, the system is able, first by comparing these
calculated values with the actual sensors readings, to detect
the existence of faults (fault detection), then by reasoning
over a diagnosis model, to produce an accurate diagnosis
(finding the fault source, which could come either from the
actuators or from the sensors themselves) at run-time without
requiring the explicit coupling of actuators and sensors at
design time. The relations between the actual components
are entirely deduced at run-time from the characteristics of
actuator and sensor types. Therefore it is well adapted to the
openness of ambient systems.

This paper is organized as follows. Section 2 is a state of
the art of some existing diagnosis techniques, in the fields of

2/8

automatic control and AmI. Section 3 describes our fault
detection and diagnosis approach. Section 4 shows how this
approach may be applied to a complete fault detection
example illustrated using our diagnosis simulator. Finally,
the conclusion highlights some directions for future work.

II. STATE OF THE ART

Fault detection and diagnosis first appeared in the field of
automatic control, in which systems are modeled
mathematically in the form of differential equations, or their
equivalent transformed formulations [1]. Many works have
been done in the field of automatic control to improve
system reliability; generally the resulting systems are fault
tolerant systems. However, the systems in automatic control
are usually pre-defined: manufacturing systems composed of
machine tools, robots, transportation systems or well-defined
household appliances. These systems do not exhibit some of
the particularities of ambient systems such as dynamicity
(devices are continuously changing states, reading values,
positions, adapting to the context etc.), high heterogeneity of
devices, and openness (adding or removing devices at run-
time) [2]. In the field of automatic control, fault detection
and diagnosis consist of three main tasks:

• Fault detection: finding out if something is not
working as expected in the diagnosed system.

• Fault isolation: finding the cause of a detected fault.
• Fault identification: determining the nature and

magnitude of a fault.
Fault detection and isolation are the most important tasks in
fault detection and diagnosis systems. Fault isolation and
fault identification are usually referred to together as fault
diagnosis. Fault identification, even though useful, is
sometimes ignored as the effort it requires is not worth the
resulted information. In this paper we introduce a framework
that focuses mainly on fault detection and isolation in the
field of AmI systems.

Note that since AmI systems are user-centered, diagnosis
can refer to two kinds of tasks: (i) user-behavior diagnosis,
which corresponds to verifying whether the user has properly
done his/her expected task, (ii) system-behavior diagnosis,
consisting of verifying whether the system actuators have
performed their task properly. Many techniques are proposed
for user-behavior diagnosis, especially in the field of
Ambient Assisted Living (AAL); the approach consists in
gathering user data (behavior, preferences, etc.) in order to
apply machine learning techniques [3] to detect anomalies in
user behavior. In this paper we focus on fault detection and
isolation of system behavior only.

In addition to the particularities of AmI systems
mentioned earlier, one of the main challenges of ambient
environments is that services, whose goal is generally to
satisfy user’s preferences by performing a specific task, are
executed in the background such that they are unnoticeable
by the user. This requirement causes some difficulties for
fault detection because a non-intrusive system cannot
decently flood the user with a large number of fault detection
data. Conversely, users uninformed of detected faults may
continue to rely on failed services without noticing. This can

be very critical as AmI systems are becoming increasingly
autonomous and complex. That is why many infrastructures
for pervasive computing, incorporate fault-tolerant
mechanisms. Examples include the Context Toolkit [5], Aura
[6], Solar [7], ConFab [8] and Gaia [9]. These systems
provide system-level mechanisms for monitoring application
components and address particular issues that arise in
pervasive computing contexts such as management of
heterogeneous resources and distributed computing. In
particular the prototype of Gaia implements some fault-
tolerance mechanisms, and it has been extended with some
fault handling techniques [10]. These mechanisms include
heart-beat-based status monitoring, redundant provisioning
of alternate services and/or applications, and restarting failed
application components. Different failure reasons were
identified [9] and classified [10]: components and/or services
failing due to low battery power, physical damage, network
disconnections or Quality of Service (QoS) problems, and
Byzantine failures caused by deliberate attacks on the
application. [11] introduces a recovery model for context-
aware environments. However it focuses on recovering from
design errors at the application level (namely object binding
failures), and not on resilience to physical failures.

In our approach we are more interested in a model-based
FDD technique, which is a technique based on a system
description that is used to define the behavior of each
component within the system and the connections between
these components [12]. The technique consists in simulating
the system’s behavior and reasoning over the system model.
Obtained information is used to compare the expected
system behavior with the actual system behavior, and thus to
detect faults. The major challenge of this technique is
combinatorial explosion which makes the approach useless
for devices composed of a considerable number of
components [13]. We claim that we can overcome this
problem by describing, at the fault-detection task, only
system components and structure but not the behavior. The
system’s behavior, however, could be used at the fault
diagnosis task to isolate the component whose behavior
caused the fault. Another technique that is based on the
description of the system’s behavior is [14], which deals with
context aware adaptive applications where adaptation is
defined via a set of rules. The technique consists in
transforming the rule set into a formal finite-state model.
Algorithms are then proposed to analyze the finite-state
model in order to detect adaptation faults. The approach is
different from ours since they compare system state to an
already established set of adaptation fault patterns, whereas
we dynamically deduce faults by comparing the real world
state to the model dynamically at run-time.

In other works, such as [2], there have been attempts to
address the diagnosis problem in AmI using sensor networks.
The technique consists in detecting faults within a sensor
network by applying a fuzzy logic data fusion approach
using a Statistical Process Control and a clustered covariance
method [15]. We adopt another approach in which we do not
rely on machine learning, instead we base our approach on
the proper modeling of the diagnosed system. Models are

3/8

then used at run-time to dynamically draw conclusions about
the proper operation of the system.

In general, we notice that regardless of the approaches
proposed in existing work, it is always supposed that sensors
and actuators, whether they are represented in a model or
not, are somehow directly linked. In other words the
diagnosis system explicitly contains the relationships
between actuator actions and sensor states. We claim that
building such explicit links is poorly adapted to highly
dynamic and open ambient systems. Indeed, as devices are
added to and removed from an ambient environment at run-
time, it is very difficult for the system designer to thoroughly
describe, at design time, how the system will be structured at
runtime. For these reasons, we introduce our approach
allowing the decoupling of actuators and sensors in the
model, while enabling the deduction of the links between
them at run-time.

III. OUR APPROACH

A. Overview

In this section we detail our Fault Detection and
Diagnosis framework for ambient environments. We start by
introducing the context of use of the framework. In Figure 1,
the FDD framework is situated within the context of a real
ambient system. The latter’s most important components,
that are necessary to the operation of the FDD framework,
are actuators and sensors. These components, and other
entities described later, are modeled in order to perform the
Fault Detection and Diagnosis Tasks. As illustrated in Figure
1, the FDD framework relies mainly on an environment
abstract model, an environment concrete model, and
instances of the latter.

The environment abstract model is detailed in Figure 2. It
defines the structure of the environment model in a way that
enforces the decoupling of sensors and actuators at all levels.
This is achieved by introducing the concept of effect, which
is a modeling of the physical consequence(s) of the actions
of actuators onto the environment. The Abstract Model is
further discussed in Subsection C.

The environment concrete model follows the general
structure of the abstract model and defines sensor and
actuator types, the expected physical effects, the appropriate
physical laws and the relations between all these entities.

An environment instance is created at runtime by the
context engine that intercepts system events and signals. It
contains the actual sensors and actuators as well as the actual
values of effects produced by actuators and read by sensors.

Because the models of a particular AmI system follows a
common abstract model, it is exploitable by the prediction
engine, responsible for deducing the values expected to be
read by the sensors. Comparing these values with the actual
sensor readings makes it possible to perform Fault Detection.
Then, using the diagnosis model, the diagnosis engine is
responsible for isolating these faults and determining exactly
what components are responsible for them. In the following
subsections, we discuss the different models composing our
FDD framework and the fault detection tasks.

To better explain our approach we will look at the FDD
framework from two perspectives; (i) the FDD Framework
Models (see Figure 3 and 4), which describes the way the
ambient environment and its components are modeled within
the framework, and (ii) the general structure and operations
of the FDD framework (see Figure 5), in particular how the
models defined in (i) are exploited by the FDD framework.

Figure 1. The FDD Framework Achitecture in the AmI context

Figure 2. Abstract Model

B. The FDD Framework General Architecture

This part describes the FDD Framework according to two
perspectives; a conceptual point of view (Figure 3 and 4), in
which we describe the models used by the FDD framework,
and an architectural point of view, Figure 5, in which we
describe the FDD framework’s architecture, operations and
use of models.

1) Models used by the FDD framework
In order to the FDD Framework to perform the Fault

Detection and Diagnosis tasks it uses information from the
following models:

• The Environment’s Static Model
• The Environment's Dynamic Model
• The Diagnosis Model
In Figure 3, the “use” relation between the models

describes in fact the way the FDD framework uses
information from one model to construct the other. For
example, as explained earlier, the FDD framework uses
information from the static model in order to populate the
dynamic model (create environment instances).

4/8

The Diagnosis Model is used to achieve fault isolation.
Therefore its nature is completely dependent on the type of
Diagnosis Engine used. We neither restrict the range of fault
isolation techniques, nor the nature of the diagnosis model to
be used. In all cases however, the FDD framework uses the
static model to build or complete the Diagnosis Model.

Figure 3. The FDD Framework Models

Figure 4. The FDD Framework Models’ Hierarchy

Figure 5. Run-time Architecture of the FDD framework

2) Architecture of the FDD framework
The operations of the FDD Framework depend on which

model from the FDD Framework Models is handled. These
models are exploited by engines in order to deduce fault
detection and diagnosis conclusions. The general run-time
behavior of the framework, as shown in Figure 5, can be
summarized by these steps:
i) The Context Engine uses information from the

hardware layer and from the Environment's Static
Model to properly instantiate the real world objects.

ii) Information contained in the Environment's Static
Model (Physical Laws to apply and/or Deduced Links
between Different Types of Actuators and Sensors) and

information contained in the Dynamic model (Actual
Instances and their values) are used by the Prediction
Engine to calculate the expected values of sensors.
Simple comparison between predicted values and real
readings of sensors allows us to detect probable faults.

iii) These conclusions (probable faults) with the calculated
values, information from the Static Model, information
from the Dynamic Model and information from the
Diagnosis Model are exploited by the Diagnosis Engine
to perform Fault Isolation. This completes diagnosis.

C. The FDD Framework Models

In this part we show how the abstract model allows one
to model the ambient environment while enforcing the
decoupling of actuators and sensors at design time.

As shown in Figure 4, the environment model can be
divided into two main parts: a static one and a dynamic one.
The static model contains (i) the abstract model composed of
generic entities, namely Actuator, Sensor, Effect, etc. and (ii)
the concrete model that specializes and concretizes these
entities (Light Sensor, Sound Actuator, etc.). Actuators
produce Effects, which have Effect Properties (Figure 2).
Sensors detect Measurable Properties. Laws relate all these
kinds of Properties in order to model physical phenomena.
Using laws it is possible to estimate the values detected by
the Sensors. The dynamic model contains the actual instances
of sensors and actuators present in the physical environment.
It stores the current state of the environment (sensor values,
actuator commands) and it is kept updated at run-time.
Section 0 explains how this model is populated and updated.

Let us see how this works on a concrete environment
model, corresponding to a lighting system (Figure 7). The
abstract Sensor entity is concretized as a Light Sensor entity
(or a specific Light Sensor Type), the abstract Actuator entity
as a Light Bulb (or a specific Light Bulb Type). Light
Sensors and Light Bulbs share an Ambient Property which is
the Zone in which they are located (for example the name of
the room). A Light Sensor can detect a light level (Ambient
Light concretizes Measurable Property). Likewise, a Light
Bulb produces a Light Effect (concretization of Effect)
which is characterized by a Light Intensity (concretization of
Effect Property). A corresponding set of Laws is instantiated
in order to calculate the value of the Light Intensity around
the Light Sensor entity.

The calculations will use properties such as the position
of the Light Bulb and the Light Sensor to determine the
distance between the two components, the light intensity
emitted by the Light Bulb to determine the received light
intensity. A combination law can be used if there is more
than one Light Bulb emitting light toward the Light Sensor.
It is important to note here that our approach does not
impose a level of detail for the physical laws. It is up to the
designer to choose the relevant level of granularity. Indeed
one can imagine a different modeling for our example, in
which the effect of light is represented by a Boolean value
(light absent – light present). This freedom to choose the
level of granularity is well adapted to AmI systems since
their use in real world varies according to context. We can

5/8

imagine a smart home design for people with hearing
impairment in which the modeling of the effect of sounds is
very detailed in order to enhance the perception of sound.

IV. LIGHT SYSTEM FDD EXAMPLE

In this section we present an illustrative example in
which we show how our FDD framework could be
integrated into a real AmI environment. We suppose that our
ambient environment is a smart home, in which we focus
only on the lighting system. The living room and the
bathroom are equipped with the following devices:

• In the living room:
o Three light bulbs: two are 23 W fluorescent light

bulbs generating 1500 lm each, and one is a 60 W
incandescent light bulb generating 800 lm.

o Two light sensors: one is a photo transistor (with
accuracy of ±75% [16]; it is from these accuracy
values that we determine the tolerance value for each
sensor type) and the other is a photo diode with a
current amplifier (with accuracy of ±33%; called
“Photo Diode” for short in the rest of the example).

• In the bathroom:
o A 100 W incandescent light bulb of 1750 lm.
o A light sensor of type photo resistor (accuracy not

guaranteed).
The approximate positioning of these components is

illustrated in Figure 6 (the exact x,y coordinates are defined
later in the dynamic model; origin is at the top left corner and
distances are in centimeters). The transparent circles around
actuators have diameters proportional to the produced Light
Intensity. Their only purpose is to allow one to quickly
compare between actuator effects values. The actual intensity
value is written under the actuator type picture. The intensity
values read by the sensors are written after their names.

A. The Simulator

To implement the example we use a simulator that we
have developed in Java (see Figure 6 for a screenshot).

Figure 6. The AmI Environment as presented in the simulator

B. Environment Model

On Figure 4, the Environment's Static Model was
described as composed of an Abstract Model and a Concrete
Model. Figure 7 shows how the Concrete Model is
structured, based on the Abstract Model, in the context of the

lighting system. The Concrete Model is defined using a
textual triplet-based syntax. For instance to define the sensor
type “Photo Transistor” the syntax is:
Photo Transistor is-a Sensor;

Where “Sensor” is the Entity defined in the Abstract Model.
And to describe the relation between “Photo Transistor” and
the detected entity “Ambient Light Intensity” the syntax is
the following:
Ambient Light Intensity is-a Measurable Property;
Photo Transistor detects Ambient Light Intensity;

Where “Ambient Light Intensity” is defined as a
“Measurable Property” and where “detects” is a relation
defined in the abstract model as the link between entities of
type “Sensors” and entities of type “Measurable Property”.

This syntax is used to describe all of the Concrete Model
depicted on Figure 7. The entities defined in the Concrete
Model are the following (in bold, types from the abstract
model):

Sensors: Photo Transistor, Photo Diode, Photo Resistor.
Actuators: Fluorescent-, Incandescent Light Bulb.
Properties:
Tolerance: A property for Sensors. It will be instantiated

for Photo Transistors and Photo Diodes, which have
tolerance values, but not for Photo Resistors. The value of
tolerance of each sensor will be considered at fault detection
stage as the threshold for error margin.

Zone: is a property for all actuators and sensors that
indicates the name of the room in which they are located.
Two objects not in the same room are not supposed to affect
each other as far as light is concerned.

2D Position: is a property for all actuators and sensors
that is represented by the coordinates of each component;
however some actual instances may be without coordinates.

Measurable Property: Ambient Light Intensity, an entity
that models the expected readings of each Light Sensor.

Effect: Light Effect, which is the main effect that is
produced by the light actuator. By definition this Entity is a
description of the physical phenomena observed as a
consequence of the actions of actuators on the ambient
environment. In this context it is a description of the light
emission phenomena observed when a Light Bulb is on.

Effect Property: Light Intensity, which is a property of
the Light Effect. It contains the specific value of the light
intensity of the Light Effect produced by each light actuator.

Law:
Ambient Light Law Set: this entity contains a set of laws,

expressed as mathematical functions, that allows us to
estimate the value of “Ambient Light Intensity” that each
sensor is supposed to detect. The functions use values from
other entities and results from other functions within the
same law set to perform calculations. The functions are:

SameZone (s,a) = (Zone (s) == Zone (a)) (1)

Distance (s,a) =
│+∞ if SameZone(s,a)==false
│Sqrt[(X(s) - X(a)) 2+(Y(s) - Y(a)) 2] otherwise

(2)

Sqrt is the square root function

6/8

Direct Light Exposure (s,a) =
Light Intensity (a) / Distance (s,a)

2
(3)

Ambient Light Intensity (s) =
∑(a) [Direct Light Exposure (s,a)]

(4)

(1) verifies whether or not a sensor and an actuator are in
the same zone.

(2) uses the x,y coordinates to calculate the distance (in
centimeters) between an actuator and a sensor that are in the
same zone. This function returns an infinite distance value
when the two objects are not in the same room.

(3) estimates the light intensity value at a light sensor
when exposed to a single light source positioned at a certain
distance (calculated from (2)) and generating a certain
luminous flux. The input parameter luminous flux is the
effect property that ensures that (3), and consequently the
whole ambient light law set, only considers actuators that
produce light effect.

(4) calculates the sum of all the results from (3), which is
the sum of the light intensities caused by each single light
source on this paticular light sensor. (4) is the function that
calculates the final theoretical value of the measurable
property ambient light intensity around a sensor. The
comparison of this value with the actual reading of the sensor
is the basis of the fault detection task.

In reality when instantiating actual objects from the
hardware layer into the model, it is possible to fail to obtain
the coordinates of the object (if no location service is
available). In that case the “Ambient Light Law Set” is
unusable. For that case we define another instance of Law
that is adaptable for the new (lower) level of details in which
some components are described:

Ambient Light On Off Law Set: is a set of laws that is
used when the coordinates of an object involved in the fault
detection and diagnosis are unknown. In that case we apply
Boolean functions to determine the expected sensor reading.
The functions are:

SameZone (s,a) = (Zone (s) == Zone (a)) (1)

Boolean Direct Light Exposure (s,a) =
SameZone (s,a) & isON(Light Intensity (a))

(5)

Boolean Multiple Light Exposure (s) =
OR(Boolean Direct Light Exposure (s,a))

(6)

(5) estimates whether or not a sensor is exposed to a
single light source that is turned on. The function isON
converts the value of light intensity into a true false value.

(6) applies a logical OR function on all results from (5),
which are the states of all light sources visible by this sensor.
This means that one light source that is ON is enough to
activate the light sensor.

It is relevant to note that the prediction engine is able to
use, at the same time, entities described in different level of
details. As a matter of fact, at run-time the prediction engine
uses a matching technique to affect values to their proper
parameters, in order to evaluate, first the “Ambient Light

Law Set”, which is the most detailed law and thus with the
highest priority. If it fails (for instance there are no
coordinates defined for a sensor), it tries then to evaluate the
law set with the next priority value, which is “Ambient Light
On Off Law” by exploiting the available information. It is to
be noted that this is one possible, and simplified, way to
design the environment model for the light context. In fact
we can imagine a more realistic definition of the Light Effect
entity, which in addition would describe the heat emitted by
the light source. There would be a “Heat Emission” effect
that would contribute to a model determining the current
temperature in the room. Another possible solution would be
to add another effect such as “Heat Effect” that will have as
property “Heat Emission” the latter will be used in the same
way by the set of laws for ambient temperature fault
detection. This possibility to have multiple solutions shows a
flexibility provided by our approach that might be useful in
other context of use.

C. Instance Model

Once the Concrete Model is properly set by the designer,
the framework is ready to start the real time fault detection.
Before that the model called “Environment Instances”
composing the Environment's Dynamic Model (as showed in
Figure 4) must be populated with the actual devices from the
ambient environment, represented as instances of entities
from the Concrete Model. The same triplet syntax is used by
the context engine to create instances. Operator “is-a” allows
the instantiation of an entity from the Concrete Model;
entities of type Property in the Concrete Model are used as
predicates to associate them to an instance and give them a
value. For instance to declare a fluorescent light bulb (like
the actual one in the living room) we use:

Living RoomBulb 1 is-a Fluorescent Light Bulb;

This instantiation links automatically “Living Room Bulb 1”
to “Light Effect”, so by adding:
Living RoomBulb1 value 1500;

The value of “Light Intensity” of the “Light Effect”
produced by this bulb is set to 1500 lm. The declaration of
the sensors also links them directly to the corresponding
“Measurable Property” that is “Ambient Light Intensity”.
To define the value of the zone in which the latter bulb is in,
the entity “Zone” defined in the environment model is used
as a predicate:
Living RoomBulb 1 Zone ‘ Living Room’;

The model is then completed following the same logic. The
complete dynamic model for our example, generated by the
context engine, is the following:
Living RoomBulb 1 is-a Fluorescent Light Bulb;
Living RoomBulb 2 is-a Fluorescent Light Bulb;
Living RoomBulb 3 is-a Incandescent Light Bulb;
Bath RoomBulb 1 is-a Incandescent Light Bulb;
Living RoomSensor 1 is-a Photo Transistor;
Living RoomSensor 2 is-a Photo Diode CA;
Bath RoomSensor 1 is-a Photo Resistor;

7/8

Figure 7. Concrete Model (down) created from the Abstract Model (top) in the context of Light FDD

Living RoomBulb 1 2DPosition (150,150);
Living RoomBulb 1 Zone ‘ Living Room’;
Living RoomBulb 1 value 1500;
Living RoomBulb 2 2DPosition (50,350);
Living RoomBulb 2 Zone ‘ Living Room’;
Living RoomBulb 2 value 0;
Living RoomBulb 3 2DPosition (50,50);
Living RoomBulb 3 Zone ‘ Living Room’;
Living RoomBulb 3 value 800;
Bathroom Bulb 1 Zone ‘BathRoom’;
Bathroom Bulb 1 value 1750;

Living RoomSensor 1 2DPosition (250,50);
Living RoomSensor 1 Zone ‘ Living Room’;
Living RoomSensor 1 Tolerance 75.0;
Living RoomSensor 1 value 0.0;
Living RoomSensor 2 2DPosition (250,350);
Living RoomSensor 2 Zone ‘ Living Room’;
Living RoomSensor 2 Tolerance 33.0;
Living RoomSensor 2 value 0.0;
Bath RoomSensor 1 Zone ‘ Bath Room’;
Bath RoomSensor 1 Tolerance 75.0;
Bath RoomSensor 1 value 0.0;

Note that the previous model is constantly updated via
the context engine so a new instance can be introduced at
any moment of the execution of the FDD task. It is also
possible to add instances manually (by appending the
previous model) by a user that can be the designer, an expert
or the final user of the system. Note also that “Bath Room
Bulb 1” and “Bath Room Sensor 1” does not have valid

coordinate values; therefore the prediction engine will resort
to using the ambient On/Off Law Set laws in order to predict
the sensor’s readings.

Now that all the instances are well defined, we can
perform real-time fault detection. The values defined
previously are in fact updated at run-time via the context
engine, which, in general, plays the role of a gateway
between the hardware devices and the FDD framework in
order to continuously update what we called on Figure 4 the
Environment's Dynamic Model.

D. The Fault-Detection Task

The fault-detection task consists in evaluating the
calculated (theoretical) value of every “measurable property”
supposed to be detected by a sensor. This is done via the
prediction engine using the law sets defined in the
environment model. The values are then compared to the
values actually read from the sensors. If the values are
outside the sensor’s tolerance margin then an inconsistency
is detected. This inconsistency is most likely due to a faulty
component. The faulty component is not identified at this
stage; we only detect the existence of possible faults.

Using our simulator we create the scenario described in
Table 1. The simulator generates approximate readings for
the sensors. These readings are compared with the predicted
values (calculated via the prediction engine via the law sets)
throughout a short scenario (15 seconds). In the table we
trace the values every 5 seconds.

8/8

We suppose that at Time=10s the “Living Room Bulb 2”
is turned on generating a “light effect” having the property
“light intensity” of 1500 lm. Theoretically this should have
increased the readings of “Living Room Sensor 1” from 0.95
lm to 0.106 lm, and the readings of “Living Room Sensor 2”
from 0.036 lm to 0.073 lm. Calculations from the prediction
engine clearly reflect this rise in light intensity around the
two light sensors exposed to the light emitted by “Living
Room Bulb 2”. However, at 10 s the values of sensor
readings did not change and stayed at 0.090 lm for “Living
Room Sensor 1” and 0.034 lm for “Living Room Sensor 2”.
Thus, by comparing the predicted value to the readings
(considering tolerance values of the corresponding sensors),
a fault is detected.

In the Bathroom, since the only light sensor and the only
light bulb there do not have coordinates, the prediction
engine can only estimate the On/Off state of the sensor based
on the On/Off state of the Bulb. The comparison between the
actual On/Off state of the sensor and the calculated On/Off
state do not detect any differences.

TABLE I. FAULT DETECTION SCENARIO

Time
[s]

Sensors Readings
[lm]

Prediction Engine
Calculations [lm]

LivingRoo
mSensor1

LivingRoo
mSensor2

BathRoom
Sensor1

LivingRoo
mSensor1

LivingRoo
mSensor2

BathRoom
Sensor1

0 0.090 0.034 0.55 (ON) 0.095 0.036 ON

5 0.090 0.034 0.55 (ON) 0.095 0.036 ON

10 0.090 0.034 0.55 (ON) 0.106 0.073 ON

15 0.090 0.034 0.55 (ON) 0.106 0.073 ON

V. CONCLUSION

In this paper, we introduced an original approach for the
Fault Detection and Diagnosis of AmI systems; the method
is based on the definition of the physical phenomena and
exploiting the resulting models to simulate the system
behavior; the comparison between the real system and the
simulated system is the basis of the Fault Detection and
Diagnosis approach. The FDD framework is composed of
static models that are defined by the designer, following a
predefined effect-based abstract model, to describe the
diagnosed environment, dynamic models that represent the
environment at run-time and two engines: the context engine
that populates the dynamic models with the appropriate
instances and the prediction engine that evaluates the
expected readings of sensors. The approach is adapted to the
dynamicity and openness of AmI systems since there is no
predetermined relations between actuators and sensors (they
are indeed deduced at run-time via the laws defining the
physical phenomena), and objects can be added to the model
at run-time. In addition this framework offers the freedom to
choose the level of granularity in which the system is
described, simply by using descriptions of physical
phenomena at various levels of details.

The Fault Detection part of the framework is complete,
however Diagnosis (isolating the fault and finding out its
cause) is yet to be detailed. As future work we envision to
fully describe the diagnosis part of the FDD framework.
Moreover, the current framework uses models describing

mainly the structure (entities and relations between them) of
the diagnosed environment, so to improve FDD results we
plan de describe the behavior of system components, for
instance using finite state machines. Finally, real-scale tests
in an experimental ambient environment will be carried out
in order to validate the diagnosis framework in real scale.

ACKNOWLEDGMENT

This work has been performed within the CBDP project,
a project co-funded by the European Union. Europe is
involved in Région Île-de-France with the European
Regional Development Fund.

REFERENCES
[1] J. Gertler, Fault Detection and Diagnosis in Engineering Systems,

Marcel Dekker, New York, 1998.

[2] Iliasov, A., Romanovsky, A., Arief, B., Laibinis, L., and Troubitsyna,
E. “On Rigorous Design and Implementation of Fault Tolerant
Ambient Systems”. In Proceedings of ISORC. IEEE Computer
Society, Washington, DC, USA, 2007 141-145

[3] JC. Augusto, P. McCullagh, V. McClelland, and J-A. Walkden.
“Enhanced Healthcare Provision through Assisted Decision-Making
in a Smart Home Environment”, proceedings of the 2nd Workshop on
Artificial Intelligence Techniques for Ambient Intelligence, 2007.

[4] D. Estrin, D. Culler, K. Pister, and G. Sukhatme, “Connecting the
Physical World with Pervasive Networks”, IEEE Pervasive
Computing, 2002, pp.59 69.

[5] Salber, D., Dey, A.K., Abowd, G.D. “The Context Toolkit: Aiding
the Development of Context-Enabled Applications”. In Proceedings
of the ACM Conference on Human Factors in Computing Systems
(CHI ’99), ACM Press, New York, NY, 434- 441.

[6] J. De Sousa and D. Garlan, “Aura: An Architectural Framework for
User Mobility in Ubiquitous Computing Environments” Proc. IEEE-
IFIP Conf. Software Architecture, 2002.

[7] Chen, G. and D. Kotz. “Context Aggregation and Dissemination in
Ubiquitous Computing Systems”. In Fourth IEEE Workshop on
Mobile Computing Systems and Applications. pp. 105-114. 2002

[8] J. I. Hong and J. A. Landay. “An Architecture for Privacy-Sensitive
Ubiquitous Computing”. In MobiSys, 2004.

[9] M.Roman, C.Hess, R.Cerqueira, A.Ranganathan, R.H.Campbell and
K.Nahrstedt, “Gaia: A Middleware platform for active spaces”, ACM
SIGMOBILE Mobile Computing and Communications Review, vol.
6, no. 4, pp.65-67, 2002

[10] S. Chetan, A. Ranganathan, and R. Campbell, “Towards fault tolerant
pervasive computing” in Pervasive 2004 Workshop on Sustainable
Pervasive Computing, pp. 38-44, Linz/Vienna, Austria, Apr. 2004

[11] D. Kulkarni and A. Tripathi. “A framework for programming robust
context-aware applications”. IEEE Trans. Softw. Eng., 36:184–197,
2010

[12] Kitts, C., “Managing Space System Anomalies Using First Principles
Reasoning”. IEEE Robotics and Automation Magazine, Special Issue
on Automation Science, v 13, n 4, 2006, pp. 39-50.

[13] J.D. Kleer, “Focusing on Probable Diagnoses”, in Proc. AAAI, 1991,
pp.842-848.

[14] M. Sama, D. S. Rosenblum, Z. M. Wang, and S. Elbaum, “Model-
based fault detection in context-aware adaptive applications,” in
Proceedings of 16th ACM SIGSOFT International Symposium on the
Foundations of Software Engineering, pp. 261-271, 2008.

[15] Shell, J., Coupland, S., and Goodyer, E. N. (2010). “Fuzzy data
fusion for fault detection in wireless sensor networks”. Computer.
IEEE. Retrieved from http://hdl.handle.net/2086/4492.

[16] Tamara A. Papalias and Mike Wong, “Making Sense of Light
Sensors”, Application notes, CA: Intersil Americas Inc. 2007.

