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Abstract — Ambient intelligence systems interact with their
surroundings using actuators and based on environnmal
data collected from sensors’ readings. Diagnosis irthis
context must address some particular challenges due the
dynamic nature of these systems and the impossiliylito pre-
define control loops between sensors and actuatoet design
time. A possible solution to this problem is to bas diagnosis
on observed physical phenomena (effects) induced by
actuators and to reason over a pre-defined ontologgllowing
one to apply physical laws, to compare calculatedalues with
actual sensors’ readings and thus to notice anomaB which
corresponds to probable faults. This “effect’-basedmodel,
which describes the expected physical effects ofethactuators
onto the environment, allows one to perform basicidgnosis,
using a static view of the system. However, to penrfm more
complete diagnosis, we claim that one has to takehe
dynamics of the system into account. To achieve #ithis
paper proposes to extend the simple “effect”-basediodel with
a behavioral model using temporal logic.
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l. INTRODUCTION

Ambient intelligence systems are interactive system
that have an overall goal of satisfying users’ ieéu
everyday life tasks using the least intrusive w&ych
systems interact with their environments using acits and
sensors. The data collected by the latter keepsyiseem
aware of its environment. Depending on the tasénitéd,
the system uses these data to determine the attidake
using the necessary actuators in order to achreveurrent
task. In this context, the system must have thensda
check autonomously whether the actions are perfdrme
correctly. As a matter of fact, when the ambierstam
sends out orders to an actuator, the informatioriged in

return from the latter reflects only the receimtstof the
transmitted orders, not their actual execution. iRstance
when the system activates a light bulb, it doeskmaotw if
the light has really been switched on (for instadae to a
damage to the bulb itself).

The particularity of ambient systems is that, umlik
traditional systems, physical resources (mainlyssenhand
actuators) are not necessarily known at design. timéact
they are dynamically discovered and may appearoand/
disappear at run-time (depending for instance oar us
location), so control loops cannot be pre-deterthifidat is
why control theory that is usually used to pre-daire
closed control loops using ad-hoc sensors is nplicable
to this type of highly dynamic systems. The modeppsed
in [1] is a framework for building dynamically the
equivalent of control loops for ambient systems,using
available resources at a given time and using them
performdiagnosisat run-time. The approach is based on the
modeling of the physical phenomena (so-calkftects
expected in the environment and that may be pratbye
actuators and detected by sensors. This methogrbaen
itself to be well adapted to the dynamic naturewibient
systems, since it enables the system to automigtical
associate actuators and sensors, and thus, to eletiac
expected measurement provided by a given sensan ahe
certain action is performed by an actuator (fotanee, an
increased light level may be expected when a balb i
activated). This way, the system is able to prodaoe
accurate diagnosis at run-time while allowing oméotally
decouple actuators and sensors at design time. \owe
deducing faults in such a situation might dependtton
previous state of the system and of the environn(femt
instance, an error consisting in an unexpected drdight
level is detected by comparing the current lighelewith
the previous one), thus it is crucial to considmeirt overall
temporal behavior. For this reason, this paperochtces
temporal extensions to the diagnosis framework gsed in
[1].

The remainder of this paper is organized as follows
Section 2 exposes the architecture of the diagnosis
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framework and shows the required extensions sdanes t
constraints can be taken into account. Then, Secsio
presents a complete example demonstrating our agipro
Finally, the conclusion highlights some issues fisture
work.

One of the main particularities of ambient envirems
is that services, which goal is generally to sgtiséer's
preferences by performing a specific task (for gxam
regulating room temperature) or assisting him/hemnis/her
task (like assisting a user in some kitchen tasksg
executed in the background in a way that they are
unnoticeable by the user. Diagnosis in ambient
environments can correspond to either verifyingt e
user has properly done his expected task, in wteske it is
a user-behavior diagnosis, or verifying whether ghistem
actuators have performed their task properly, inclvicase
it is system-behavior diagnosis. This requirembntlding
non intrusive ambient systems, causes some diffésuin
fault detection. Indeed, it is unacceptable fooa mtrusive
system to flood the user with a large number ofitfau
detection data. In the same time, not informing uker of
detected faults may cause that users continue lyoore
failed services without noticing. So, in generahist
characteristic, which is working correctly in theckground,
shows how crucial the diagnosis task is. Moreoasthient
systems are becoming
complex, which makes diagnosis a nontrivial tagk [2

Many techniques are proposed for fault detection, f
instance in some assisted living systems (called simart
homes); the approach consists in gathering usea dat
(behavior, preferences, etc.) in order to apply hivee
learning techniques [3] to detect anomalies in bsdrvior.
This approach allows us to perform user-behaviagmibsis.
With our work, what we are aiming for is a real4im
system-behavior diagnosis framework (by device veam
actuators and sensors). In fact complex system#t fau
detection techniques can be used in the case dtadev
centered diagnosis. The challenge here is to cengit
most suited approaches to ambient systems’ chasiitte
and to adapt them if possible. One of these appezac
proposed for complex systems diagnosis is the rioattd
diagnosis technique. It is a technique based ogysters
description that is used to define the behavioreath
component within the system and the connectionsdeat
these components [4]. The technique consists imlaiing
the system’s behavior and reasoning over the systedel.
Obtained information is used to compare the expecte
system behavior with the actual system behaviad, thos
to detect faults. The major challenge of this tégha is
combinatorial explosion which makes the approaaiess
for devices composed of a considerable number of
components [5].

In general, we notice that regardless of the ambhres
proposed in existing work, it is always supposedt th
sensors and actuators, represented in the model, ar
somehow directly linked. In other words the model
explicitly contains the relationships that link @etor actions
and sensor states. We claim that building suchi@ifhks
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is poorly adapted to highly dynamic ambient systems
Indeed, as devices are added to and removed from an
ambient environment at runtime, it is very difficébr the
system designer to thoroughly describe the systeamesign
time. For these reasons, we introduce our apprab@ing

the decoupling of actuators and sensors in the natide
enabling the system to deduce the links betweem tae
runtime.

Before explaining the effect-based model and the
behavior of the diagnosis process, let us introdtiee
context of use of the diagnosis framework. In Hig.the
diagnosis framework is situated within the contektan
ambient system and its main components are illgstrdt is
composed of an effect meta-model and a diagnosips.
The effect meta-model is instantiated to refle@ Htatic
representation of the ambient system (static mpdel)
contains the actual system components along with th
expected physical phenomena to be observed in the
environment. The dynamic model defines the dynamic
behavior of possibly complex physical phenomenae Th
union of the dynamic and static model constitutes t
“system model instance”. The so-called “diagnosacpss”
performs run-time, background diagnosis on the antbi
system, based upon information drawn from the ayste
model instance and the ambient system itself.

THE DIAGNOSISFRAMEWORK

increasingly autonomous and As illustrated by the directions of the arrows gpin

toward the ambient system from the diagnosis fraonkw
the latter is designed in such a way that it maygoafted”
onto the ambient system without changing it.

It is to be noted that in this paper we do neittiscuss
the modeling, nor the operation of the ambientesystWe
do rather discuss, in the following subsections,rttodeling
and the use of the effect meta-model, its possitdtances
and the diagnosis process.

A. The Effect Meta-Model

1) The Static Model

In order to have a generic approach we proposeta-me
model that is based on the modeling of ambient atbje
(mainly actuators and sensors) and the explicitrijeon
of the concept ofeffect The latter becomes the only
“deduced (via reasoning)” link between actuatorsd an
sensors. This meta-model is instantiated to reptete
diagnosed ambient system. To benefit from good
extensibility properties and broad tool supportiotogies,
namely OWL ontologies [6], have been used to detlign
effect-based meta-model. The structure of the effeeta-
model ontology is illustrated in Fig. 2.
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Figure 1. The Diagnosis Framework and the Ambient System

In the proposed approach, the concept of effedhelef
the relation between actuators and sensors. Thistom is
done in

respect of the description of the physical

consequences of the actuators’ actions on the ambie

environment and thus on the sensors’ readings. 8esign
requires an explicit definition of the physical laowever
this definition of physical laws is more or lesdailed so
the model (instance of the meta-model representtiey
actual ambient environment on which diagnosis
performed) can follow different levels of granutgriThe
choice of the latter can depend, among other thiogshe
context of use, for instance assisted living hofeeslind
persons would have a detailed definition of the ehddr
the propagation of sound waves.

The main contribution of this approach, as illustdaby
Fig. 2, is to eliminate any direct link, at desigime,
between sensors and actuators in an ambient em&nain
For example in an environment composed of a lighb b
(actuator) and a light sensor (sensor), the lighb kemits
(produces) light (effect). Light is characterizeg lght
intensity (effect property). Light sensor is sefesilio
(detects) its surrounding light
property). To calculate (calculates) the light sy
(measurable property) that reaches the light seénsior the
light bulb considering the distance between themmodel
the fact that light intensity decreases with theasq of the
distance [7] (physical law). In the mathematicahfala of
this physical law the distance between the ligti laund the
light sensor must be expressed. The distance betiee
two components is deduced from their respectivetipos
(ambient object property). Once we have the resilthe
calculations of the physical law which is the lightensity
we expect around the light sensor, and we haveuhent
value of the light intensity given by the sensaelf, the
diagnosis is performed by comparing, according dmes
diagnosis strategy, the two values. With this mageldo
not impose a diagnosis strategy. So in generalthel
information provided by the model is in fact theasarable
physical properties values that are calculated bg
corresponding physical laws. These are the vahasdre
expected to be read by the sensors. These valaehem
compared with their
properties values that are given by the senscaslings.

As stated earlier, the physical laws can followfedint
levels of details. The benefits of such dynamiagn be
demonstrated when considering different contextsiss.
Let us consider the lighting system as an exanipé.us
say we are in the context of an ambient home lghti

system; in an ambient home we can imagine a light

propagation formula as a simple ON/OFF relatiowieen
light bulbs emitted light and light sensors’ reagin
However lighting a work space might use more fingirged
rules, so in this context the formula would use aren
accurate light propagation

intensity (measigab

—

mentioned inverse square law) to make sure thdit lig

intensity remains around the expected value. lipigo the
final designer of the actual ambient system torddtee the
level of granularity appropriate to the context.

detects Measurable calculates Physical
Property Law
dependsO
Ambient Object
Property dependsOn
fis-a A 4
produces @ hasProperty Effect Property

Figure 2. The effect meta-model ontology schema

The main goal of this approach is to provide a dyica
diagnosis framework. The effect meta-model provittes
diagnosis framework with the necessary data. This is
used by the diagnosis process to perform diagnosis.

2) The Dynamic Model

The effect based meta-model models effects as gdilysi
phenomena. Frequently, the latter
variables. To model temporal behavior a first solutvould
be to use Linear Temporal Logic (LTL). As a matiéfact
in addition of being a formalism for the specificat and
verification of concurrent and reactive systems] Li in
fact a formalism for expressing qualitative projsrtabout
the execution of the system [8]. However when exangi
the behavior of the actuators in an ambient enwiemt, it
is noticeable that, from the time actuators arevaieid,
most of the times, the physical impact takes aagedelay
before it is observed. The durations of these delgry
depending on the type of the physical phenomena.
instance after turning on a heater, the heat efteat is
supposed to be produced is not noticeable untiéréai
time has passed, the length of this time is defimgdeat
transfer laws. Such properties cannot be takenantmunt
by using classical linear-time temporal logic (LTLHor
real-time systems where a run of a system is mddatea
sequence of events that are time-stamped withvadaks,
which is the case here with times and durationsutaied
by physical formula, LTL is inadequate. Insteaat, $uch
systems, modalities decorated with quantitativestraimts
over real values are required. A known extensianstah
logic is MTL (Metric Temporal Logic) in which modtaés
of LTL are enriched with quantitative constraing§. [With

equivalent measurable physical MTL when describing the behavior of real-time systene

can consider deadlines between environment everds a
corresponding system responses. For exampeery
“alarm” is followed by a “shutdown” event in 10 tienunits
unless “all clear” is sounded firs§t[10] can be represented
as:
o(alarm >(0g 1g)allclear [ Op 0y sShutdowd)
00.10)means sometime in the next 10 time units.
0oy Means in exactly 10 time units.

Although there are other alternative approaches to

extend LTL such as Timed Propositional Temporal itog

law (like the previously (TPTL)[11], MTL meets our needs at this stage.

B. The Diagnosis Process

The diagnosis process is a set of finite state mash
modeling the system’s behavior. It is using sensord
actuators related events as transitions of the emhlsiystem

depends on time

Fo



behavioral model to perform diagnosis tasks, hetiee
relation “Intercepts System Events” between theymligis
process and the ambient system in Fig. 1. In faet t
diagnosis process is a generic process that pesform

diagnosis based on one hand, the ambient system'’s

behavioral model and, on the other hand, informatiom
the system effect model (instance of the effectarneddel).

For example we can imagine a light diagnosis task

consisting in expecting an increase of the lighensity
value after light is turned on, or we can imagine a
continuous light intensity verification diagnosisopess,
during which the diagnosis task consists in vemiythat
light intensity value is kept around a certain eallihe latter
value changes according to both the received systemt
(light turned OFF or ON) and/or information dedudezin

the instance of the effect meta-model (light intigngalue
deduced from the distance between light sourceslightd
Sensors).

1) The concept of time in the diagnosis framework

In the proposed approach, the issue of “time” is
considered from two angles; the first angle is tiae a
physical variable in the physical formulas, theosetangle
is time as part of the diagnosis framework dynamics
(behavioral model). In the first angle, time is dise the
physical formulas defined in the Static Model (amste of
the effect meta-model). The fact that time is aretha
concept between the Static and the Dynamic modties
reason that the system model instance is divideal timo
interrelated parts as illustrated in Fig. 1. Wheaspnt in
these formulas, time becomes a shared concept éetie
Static Model and the Dynamic Model. The latter, if
necessary, uses time in the description of the iphlys
phenomena’s behavior, in which case is represeased
behavioral model. As for the diagnosis procesdesicribes
the system’s behavior while taking into accountghgsical
phenomena’s impact on the system’s overall behavior
which requires interacting with the Dynamic Model's
behavioral model; this is the second angle in whiicte is
considered. The diagnosis process intercepts atgystem
events to perform diagnosis (the technique is ketain the
next subsection). The challenge here is to condidh
angles and their combination into one diagnosisadyn
framework capable of performing real time faultgiasis.
What is to be dealt with here also is the synclaation of
time value with actual system'’s time. It is the gifiasis
process part of the framework that handles this tas

IV. A DIAGNOSISEXAMPLE

In this example, we will see how diagnosis is penfed
when a bathtub is being filled. As illustrated iig.F3, we
have a bathtub and three actuators controlled ey
system’s controller: two water taps (a hot one ancbld
one), and a water drain. There are also two sensors
thermometer and a level indicator, whose readiregp khe
system informed about the state of the environnfeater
temperature and level) in real-time.

th
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o
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Figure 3. Components of the Bathtub Diagnosis Example

Drain &>

We suppose that the provided ambient system’s
behavioral model is composed of a set of finitetesta
machines (FSM) describing the system’s overall biena
In this example, we isolate the part that descrtbsks that
are related to the bathtub behavior. Fig. 4, isngplified
proposal of what the bathtub FSM would be. In this
demonstrative example, we will see a simplifiedgdiasis
example on a specific task; “filling bathtub” staté the
FSM. The latter task and its relative transitiors the parts
that are bold in Fig. 4.

For this particular example, the temperature véhag is
requested by the system is 50°C and the level Osliiéy.
This is represented by the entering transition fithrg
bathtub”, the instantiation of this transition is:

Start Filling [50 ; 150]

The diagnosis process part of the diagnosis framewo
as illustrated in Fig. 1, listens to system evé8tart Filling
[50 ; 150]). Afterward, the diagnosis process wostdrt
performing diagnosis tasks related to the “fillibgthtub”
state. In this example, we will consider a simpiggdosis
task consisting in comparing, at every point indjnthe
expected values of water level and temperature agthal
values read by the sensors. The comparison takes
account a tolerance value defined by the diagnusisess
as a parameter of the physical law instance. A alob
variable “time” is set to keep trace of elapsedetisince the
beginning of the diagnosis process. The “time” uisit
chosen to be “seconds” so no conversion is needezhw
used in physical laws. Both the water temperatefated
and the water level related physical laws involve
quantitative time constraints that can be describsitig
MTL.

In the first part of this example, only physicavkathat
are related to water level are considered. Thendisig of
water temperature is dealt with in the second p&ne
mathematical formulas of these physical laws are:

Water Flow Ambient Law:

in

Anbi ent _Water _Quantity= ()
Wat er _Quantity(Hot)+Water _Quantity(Qold)
Water Flow Law for Hot and Cold Water:
Wat er _Quantity(Hot)= 2)
LO(Hot)+Wat er _Di scharge_Rat e(Hot)xti me
Water _Quantity(Cold)= 3)

LO( @l d) +Wat er _Di scharge_Rate(Ql d)xti me



Start Filling[Temperatre ; Level] Stop Filling[Temperatre ; Level]

Fllllng
BathTuh

Mamtamng
BathTub
condlﬂons

Start Flling[ Temperatre ; Level] A
Empty Bath[- ; 0]

Figure 4. Simplified FSM describing bathtub behavior

It is to be noted that “Ambient Water Level”, whigha
sensor’s reading given by the water level indicatditers,
and “Ambient Water Quantity” which is calculated the
Water Flow Ambient Lavn cnt, represent the same entity,

Water Huw

Amblenl Law
Physlcal
Waler Huw

dependsOn

calculates

Water I.evel

Measurahle
Pmpertv
Water Quantity (Hn!)
Water Quantity (Cnld)

calculates

Effect Property

hasPropert;
P Water Dlschalge
hasProperty Rate (H"l)
‘Water Discharge
Rate (Cold)

Figure 5. Effect-based model instance implementing the statidel
related to bathtub level diagnosis

Cold
Water Tap

Hot
Water Tap

Water Fow
Effect

which means that they are comparable entities aft
applying a simple rule of physical unit conversfoom liter
to cnt. Moreover, | (Initial level) is considered as null for
simplification reasons. These physical laws andemth
components of the effect meta-model instantiating t
ambient system by the diagnosis process are repessby
the rectangles in Fig. 5.

The diagnosis process performing bathtub waterl lev

diagnosis uses information taken from this instaofc¢éhe
effect-based meta-model corresponding to everytpain
time Diagnosis is performed. So, knowing the sy&em
water discharge rate value for hot and cold waerany
given time (timer value) the diagnosis process lstath
the value of the water level detected by the |évdicator
sensor and the value of the expected water levelleted
by the stated physical laws. This information isdigo
perform diagnosis. Let us suppose that we havenatanot
“Water Discharge Rate” of 140¢fm for Cold water and
110cni/s for Hot Water. Let us also suppose that diagnosi
over water level is performed periodically evergeonds.
TABLE | illustrates the trace of the diagnosis mss for
the first 15 seconds after the order to the actagiwater
taps) has been transmitted (“timer"=0 being the raainthe
order has been transmitted).

The first two null values given by the level indicasensor
at the first and second diagnosis can be explamethe
fact that 750 crhof water is not enough to fill the bathtub
floor so that water is detected by the sensor ithdixed
usually on the bathtub side. In this example, wasinon
the fact that, so far, the output of the diagnosie
information describing the expected state of thstesy
after the proper execution of the system’s command
that the framework does not impose a way of ushey t
generated diagnosis information, nor how to comtiaeen
with actual sensors’ readings. The Diagnosis resuight
be used for textual warnings to the user of the iantb
system as a feedback on what is going on and onthethe
or not its requested actions are being properigebesl by
the system, or, in other cases, it might be usedhey
ambient system itself as input information to ataier
control mechanism for fault correction.

TABLE I. WATER LEVEL DIAGNOSIS TRACE FOR THE FIRSTL5
SECONDS
I Time | Ambient Water Quantity | Ambient Water Level Diag-
(From effect Model) (From Level I ndicator) nosis
0s 0.00 cr(0.00 liter) 0.00 liter (£ 2) OK
3s 750.00 cy(0.75 liter) 0.00 liter (= 2) OK
6s 1500.00 ci(1.50 liter) 1.42 liter (£ 2) OK
9s 2250.00 ci(2.25 liter) 2.00 liter (= 2) OK
12s 3000.00c(3.00 liter) 2.67 liter (x 2) OK
15s 3750.00 ci(3.75 liter) 3.04 liter (x 2) OK

These control mechanisms have the particularitybéo
created at run-time. Using available actuatorssehmontrol
mechanisms would have been used to correct watet le
when a fault is reported by the diagnosis procéss.
instance this can be done by increasing the waseharge
rate when the level is less than expected and pgethie
water drain when the level is more than expectée. iSsue
of system’s behavioral control is not detailedhis tpaper.

It is to be noted that when dealing with water leve
diagnosis the dynamic part of the system modeairts is
not involved since we consider that in this cagedlare no
non-negligible physically defined delays betweetuaior
actions (filling bathtub with water) and the semssor
responses (detecting the corresponding water lievéhe
bathtub). This is, of course, not the case in twosd part
of the example which is the water temperature diagn
part.

In this second part of the example, we deal withewa
temperature diagnosis. Here the water temperatevaten
is incremental over time. In fact the time betwebe
emission of water with a given temperature and the
detection of that temperature is non-negligibleud tihis
delay in detecting, by the sensors, the physicahpmena’s
actions on the environment should be taken into
consideration and should appear somewhere in thieray
model. In reality the incremental heat elevatiorcasised,
according to enthalpy theory [12], by total accuabedl
quantity of energy Q added to the system by theatot,
this value is calculated using an integration ok th
instantaneous amount of power P generated by tatac
(we will call this effect “Heat Emission Effect”ver time:



Q= .[[ti,tf]P(t)dt [joul €] (4)

where t is the instant where the effect starts ani the
instant where the effect ends. To be able to perfiiscrete
calculations, this integral is converted into a sofninstant
power values in time:

Q = 2inyP(t) [joul €] (5)

It is to be noted that in this method the calcuaterrent
temperature value depends on both, the currentupeat
power value (which is generated by the heat ofwhter),
and the previous (at t-1) calculated energy valle.
calculate the ambient temperature of the water seethe
enthalpy formula that states that at a constanimel and
pressure:

m c=AHAT (6)

where c is the water specific heat capacity, whichhe
amount of heat required to change water’s tempexrdfithe
volumetric heat capacity of water is 4.1796 JdT [13],

conversions from Kelvin to Celsius ought to be ddeed
later), v is the total volume of the water (itsuin cni can
be deduced at any given time using (1), (2) any (3) is

the enthalpy variation andT is the temperature variation.

Under constant (atmospheric) pressure the quantityeat
Q received by a system is equal to its enthalpygbaH.
So a body of volume v where the temperature (whidhe

value to be calculated and compared with thermamete

reading) varies from to t receives the amount of heat:
Q = AH (7)

To apply this to the effect-based model,

suppose we have a constant loss of heat causdwt loljrect
contact of the water with ambient air and the hdtht
material, this heat loss is represented by a “heater” of -
500J/s; to differentiate from previous heat propere call
this property “heat loss”. The model is flexiblethe sense
that it offers many ways to represent this loshéat; the
only constraints are to have an effect properttypé “heat
power” and of a negative value. So to align thisaido the
effect model, the “bathtub” itself is instantiates an
actuator so that it can produce “heat emissioncgffith
“heat power” value of -500J/s. As a total we thavéha
total “heat power” of 2000J/s produced by the coration
of heat loss, the Cold water and the Hot water. fEsalting
instances in the effect model are illustrated ig. Bi. The 4
heat related physical laws are simplified to orstance.

In this example, the bathtub behavior can be sitadla
to a 2kW electric kettle. In reality the electrietie heating
function can be realized by an electric water treafthis
technique is very similar to that used in Hot t(tmled also
Spas).

During the first 3 minutes (180 seconds), we obth&
diagnosis traces illustrated in TABLE Il (trace® daken
every 30 seconds and initial temperature is consitito be
null “OK”). To better understand the results letamsider

the diagnosis at the second 150. The water quantity

calculated by the Water Flow Ambient Law is 37508cm
[=250cnt.s’x150s]. The accumulated water heat energy,
calculated by (2), is 300000J [=2000%3%50s]. The
ambient water temperature is calculated by (3) @péhs it
is the result of the temperature augmentation atQs,
which is 1.9140K [=300000/(m.c); m= 37500tm=4.1796
J.cm®. K™, plus the temperature at t= 149s, which is equal t
285.1947K. The final result is 287.1088K (13.95°This
value is compared with the sensor reading whid8i87°C,

an effect the comparison gives a successful diagnosis sieckave a

representing the heat emission from the actuaters i tolerance margin of 2°C.

instantiated. We call it “heat emission effect’isteffect has
the property power that we will call “heat powerthd
instantaneous amount of power P described earlldmg.
later along with other properties related to oteéfects,
other actuators and/or other sensors will be usexvaluate
all the previously stated laws that are related“Heat
emission effect”. In fact results from physical tathat are
related to water leveM{ater Flow Ambient Laare to be
used in heat related laws. As for the values weadibpt the
same constant discharge rates for hot and coldr\aatéhe
previous part of level diagnosis. So we have a teoms
discharge rate of 140¢fs for Cold water and 110¢s for
Hot Water, which results in 250ém of total water
discharge rate. We also consider that the systewkinhat
an overall “heat power” of 2500J/s is produced bthiCold
and Hot Water. For simplification reasons we suppibsit
this value is known by the system, although initgat
should be deduced after applying more complex nas
enable to deduce the power radiated by water awveng
temperature. So in this case we will directly siggpthat we
have the property “heat power” (with value of 258D&s
an effect property of the “heat emission effect’e \&lso
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Figure 6. Effect-based model instance implementing the water
temperature diagnosis.
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TABLE II. WATER TEMPERATUREDIAGNOSISTRACE framework to perform more accurate diagnosis. Binal
Vo) > > real-scale tests in an experimental ambient enwisot will
é—" 5 5% 52 .2 be carried out in order to validate the diagnasimework.
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