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Abstract — Ambient intelligence systems interact with their 
surroundings using actuators and based on environmental 
data collected from sensors’ readings. Diagnosis in this 
context must address some particular challenges due to the 
dynamic nature of these systems and the impossibility to pre-
define control loops between sensors and actuators at design 
time. A possible solution to this problem is to base diagnosis 
on observed physical phenomena (effects) induced by 
actuators and to reason over a pre-defined ontology allowing 
one to apply physical laws, to compare calculated values with 
actual sensors’ readings and thus to notice anomalies which 
corresponds to probable faults. This “effect”-based model, 
which describes the expected physical effects of the actuators 
onto the environment, allows one to perform basic diagnosis, 
using a static view of the system. However, to perform more 
complete diagnosis, we claim that one has to take the 
dynamics of the system into account. To achieve this, this 
paper proposes to extend the simple “effect”-based model with 
a behavioral model using temporal logic.  

Keywords-Ambient intelligence; ubiquitous systems; sensor; 
actuator; diagnosis; OWL; ontology; reasoning; physical law; 
temporal logic 

I. INTRODUCTION 

Ambient intelligence systems are interactive systems 
that have an overall goal of satisfying users’ needs in 
everyday life tasks using the least intrusive way. Such 
systems interact with their environments using actuators and 
sensors. The data collected by the latter keep the system 
aware of its environment. Depending on the task intended, 
the system uses these data to determine the actions to take 
using the necessary actuators in order to achieve the current 
task. In this context, the system must have the means to 
check autonomously whether the actions are performed 
correctly. As a matter of fact, when the ambient system 
sends out orders to an actuator, the information provided in 

return from the latter reflects only the receipt state of the 
transmitted orders, not their actual execution. For instance 
when the system activates a light bulb, it does not know if 
the light has really been switched on (for instance due to a 
damage to the bulb itself). 

The particularity of ambient systems is that, unlike 
traditional systems, physical resources (mainly sensors and 
actuators) are not necessarily known at design time. In fact 
they are dynamically discovered and may appear and/or 
disappear at run-time (depending for instance on user 
location), so control loops cannot be pre-determined. That is 
why control theory that is usually used to pre-determine 
closed control loops using ad-hoc sensors is not applicable 
to this type of highly dynamic systems. The model proposed 
in [1] is a framework for building dynamically the 
equivalent of control loops for ambient systems, by using 
available resources at a given time and using them to 
perform diagnosis at run-time. The approach is based on the 
modeling of the physical phenomena (so-called effects) 
expected in the environment and that may be produced by 
actuators and detected by sensors. This method has proven 
itself to be well adapted to the dynamic nature of ambient 
systems, since it enables the system to automatically 
associate actuators and sensors, and thus, to deduce the 
expected measurement provided by a given sensor when a 
certain action is performed by an actuator (for instance, an 
increased light level may be expected when a bulb is 
activated). This way, the system is able to produce an 
accurate diagnosis at run-time while allowing one to totally 
decouple actuators and sensors at design time. However, 
deducing faults in such a situation might depend on the 
previous state of the system and of the environment (for 
instance, an error consisting in an unexpected drop in light 
level is detected by comparing the current light level with 
the previous one), thus it is crucial to consider their overall 
temporal behavior. For this reason, this paper introduces 
temporal extensions to the diagnosis framework proposed in 
[1]. 

The remainder of this paper is organized as follows. 
Section 2 exposes the architecture of the diagnosis 
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framework and shows the required extensions so as time 
constraints can be taken into account. Then, Section 3 
presents a complete example demonstrating our approach. 
Finally, the conclusion highlights some issues for future 
work. 

II. STATE OF THE ART 

One of the main particularities of ambient environments 
is that services, which goal is generally to satisfy user’s 
preferences by performing a specific task (for example 
regulating room temperature) or assisting him/her in his/her 
task (like assisting a user in some kitchen tasks), are 
executed in the background in a way that they are 
unnoticeable by the user. Diagnosis in ambient 
environments can correspond to either verifying that the 
user has properly done his expected task, in which case it is 
a user-behavior diagnosis, or verifying whether the system 
actuators have performed their task properly, in which case 
it is system-behavior diagnosis. This requirement, building 
non intrusive ambient systems, causes some difficulties in 
fault detection. Indeed, it is unacceptable for a non intrusive 
system to flood the user with a large number of fault 
detection data. In the same time, not informing the user of 
detected faults may cause that users continue to rely on 
failed services without noticing. So, in general, this 
characteristic, which is working correctly in the background, 
shows how crucial the diagnosis task is. Moreover, ambient 
systems are becoming increasingly autonomous and 
complex, which makes diagnosis a nontrivial task [2].  

Many techniques are proposed for fault detection, for 
instance in some assisted living systems (called also smart 
homes); the approach consists in gathering user data 
(behavior, preferences, etc.) in order to apply machine 
learning techniques [3] to detect anomalies in user behavior. 
This approach allows us to perform user-behavior diagnosis. 
With our work, what we are aiming for is a real-time 
system-behavior diagnosis framework (by device we mean 
actuators and sensors). In fact complex systems fault 
detection techniques can be used in the case of device-
centered diagnosis. The challenge here is to consider the 
most suited approaches to ambient systems’ characteristics 
and to adapt them if possible. One of these approaches 
proposed for complex systems diagnosis is the model-based 
diagnosis technique. It is a technique based on a system 
description that is used to define the behavior of each 
component within the system and the connections between 
these components [4]. The technique consists in simulating 
the system’s behavior and reasoning over the system model. 
Obtained information is used to compare the expected 
system behavior with the actual system behavior, and thus 
to detect faults. The major challenge of this technique is 
combinatorial explosion which makes the approach useless 
for devices composed of a considerable number of 
components [5].  

In general, we notice that regardless of the approaches 
proposed in existing work, it is always supposed that 
sensors and actuators, represented in the model, are 
somehow directly linked. In other words the model 
explicitly contains the relationships that link actuator actions 
and sensor states. We claim that building such explicit links 

is poorly adapted to highly dynamic ambient systems. 
Indeed, as devices are added to and removed from an 
ambient environment at runtime, it is very difficult for the 
system designer to thoroughly describe the system at design 
time. For these reasons, we introduce our approach allowing 
the decoupling of actuators and sensors in the model, while 
enabling the system to deduce the links between them at 
runtime. 

III.  THE DIAGNOSIS FRAMEWORK 

Before explaining the effect-based model and the 
behavior of the diagnosis process, let us introduce the 
context of use of the diagnosis framework. In Fig. 1, the 
diagnosis framework is situated within the context of an 
ambient system and its main components are illustrated. It is 
composed of an effect meta-model and a diagnosis process. 
The effect meta-model is instantiated to reflect the static 
representation of the ambient system (static model); it 
contains the actual system components along with the 
expected physical phenomena to be observed in the 
environment. The dynamic model defines the dynamic 
behavior of possibly complex physical phenomena. The 
union of the dynamic and static model constitutes the 
“system model instance”. The so-called “diagnosis process” 
performs run-time, background diagnosis on the ambient 
system, based upon information drawn from the system 
model instance and the ambient system itself.  

As illustrated by the directions of the arrows going 
toward the ambient system from the diagnosis framework, 
the latter is designed in such a way that it may be “grafted” 
onto the ambient system without changing it. 

It is to be noted that in this paper we do neither discuss 
the modeling, nor the operation of the ambient system. We 
do rather discuss, in the following subsections, the modeling 
and the use of the effect meta-model, its possible instances 
and the diagnosis process. 

A. The Effect Meta-Model 

1) The Static Model 
In order to have a generic approach we propose a meta-

model that is based on the modeling of ambient objects 
(mainly actuators and sensors) and the explicit description 
of the concept of effect. The latter becomes the only 
“deduced (via reasoning)” link between actuators and 
sensors. This meta-model is instantiated to represent the 
diagnosed ambient system. To benefit from good 
extensibility properties and broad tool support, ontologies, 
namely OWL ontologies [6], have been used to design the 
effect-based meta-model. The structure of the effect meta-
model ontology is illustrated in Fig. 2.  

 



Figure 1.  The Diagnosis Framework and the Ambient System 

In the proposed approach, the concept of effect defines 
the relation between actuators and sensors. This definition is 
done in respect of the description of the physical 
consequences of the actuators’ actions on the ambient 
environment and thus on the sensors’ readings. Such design 
requires an explicit definition of the physical law. However 
this definition of physical laws is more or less detailed so 
the model (instance of the meta-model representing the 
actual ambient environment on which diagnosis is 
performed) can follow different levels of granularity. The 
choice of the latter can depend, among other things, on the 
context of use, for instance assisted living homes for blind 
persons would have a detailed definition of the model for 
the propagation of sound waves. 

The main contribution of this approach, as illustrated by 
Fig. 2, is to eliminate any direct link, at design time, 
between sensors and actuators in an ambient environment. 
For example in an environment composed of a light bulb 
(actuator) and a light sensor (sensor), the light bulb emits 
(produces) light (effect). Light is characterized by light 
intensity (effect property). Light sensor is sensible to 
(detects) its surrounding light intensity (measurable 
property). To calculate (calculates) the light intensity 
(measurable property) that reaches the light sensor from the 
light bulb considering the distance between them, we model 
the fact that light intensity decreases with the square of the 
distance [7] (physical law). In the mathematical formula of 
this physical law the distance between the light bulb and the 
light sensor must be expressed. The distance between the 
two components is deduced from their respective positions 
(ambient object property). Once we have the results of the 
calculations of the physical law which is the light intensity 
we expect around the light sensor, and we have the current 
value of the light intensity given by the sensor itself, the 
diagnosis is performed by comparing, according to some 
diagnosis strategy, the two values. With this model we do 
not impose a diagnosis strategy. So in general all the 
information provided by the model is in fact the measurable 
physical properties values that are calculated by the 
corresponding physical laws. These are the values that are 
expected to be read by the sensors. These values are then 
compared with their equivalent measurable physical 
properties values that are given by the sensors’ readings. 

As stated earlier, the physical laws can follow different 
levels of details. The benefits of such dynamicity can be 
demonstrated when considering different contexts of use. 
Let us consider the lighting system as an example. Let us 
say we are in the context of an ambient home lighting 
system; in an ambient home we can imagine a light 
propagation formula as a simple ON/OFF relation between 
light bulbs emitted light and light sensors’ readings. 
However lighting a work space might use more fine-grained 
rules, so in this context the formula would use a more 
accurate light propagation law (like the previously 
mentioned inverse square law) to make sure that light 
intensity remains around the expected value. It is up to the 
final designer of the actual ambient system to determine the 
level of granularity appropriate to the context. 

 

Figure 2.   The effect meta-model ontology schema 

The main goal of this approach is to provide a dynamic 
diagnosis framework. The effect meta-model provides this 
diagnosis framework with the necessary data. This data is 
used by the diagnosis process to perform diagnosis.  

2) The Dynamic Model 
The effect based meta-model models effects as physical 

phenomena. Frequently, the latter depends on time 
variables. To model temporal behavior a first solution would 
be to use Linear Temporal Logic (LTL). As a matter of fact 
in addition of being a formalism for the specification and 
verification of concurrent and reactive systems, LTL is in 
fact a formalism for expressing qualitative properties about 
the execution of the system [8]. However when examining 
the behavior of the actuators in an ambient environment, it 
is noticeable that, from the time actuators are activated, 
most of the times, the physical impact takes a certain delay 
before it is observed. The durations of these delays vary 
depending on the type of the physical phenomena. For 
instance after turning on a heater, the heat effect that is 
supposed to be produced is not noticeable until a certain 
time has passed, the length of this time is defined by heat 
transfer laws. Such properties cannot be taken into account 
by using classical linear-time temporal logic (LTL). For 
real-time systems where a run of a system is modeled as a 
sequence of events that are time-stamped with real values, 
which is the case here with times and durations calculated 
by physical formula, LTL is inadequate.  Instead, for such 
systems, modalities decorated with quantitative constraints 
over real values are required. A known extension for such 
logic is MTL (Metric Temporal Logic) in which modalities 
of LTL are enriched with quantitative constraints [9]. With 
MTL when describing the behavior of real-time system one 
can consider deadlines between environment events and 
corresponding system responses. For example "every 
“alarm” is followed by a “shutdown” event in 10 time units 
unless “all clear” is sounded first" [10] can be represented 
as: 

 □(alarm �(◊(0,10) allclear  ˅  ◊{10} shutdown)) 
◊(0,10) means sometime in the next 10 time units. 
◊{10} means in exactly 10 time units. 
 

Although there are other alternative approaches to 
extend LTL such as Timed Propositional Temporal Logic 
(TPTL) [11], MTL meets our needs at this stage. 

B. The Diagnosis Process 

The diagnosis process is a set of finite state machines 
modeling the system’s behavior. It is using sensors and 
actuators related events as transitions of the ambient system 



behavioral model to perform diagnosis tasks, hence the 
relation “Intercepts System Events” between the diagnosis 
process and the ambient system in Fig. 1. In fact the 
diagnosis process is a generic process that performs 
diagnosis based on one hand, the ambient system’s 
behavioral model and, on the other hand, information from 
the system effect model (instance of the effect meta-model). 
For example we can imagine a light diagnosis task 
consisting in expecting an increase of the light intensity 
value after light is turned on, or we can imagine a 
continuous light intensity verification diagnosis process, 
during which the diagnosis task consists in verifying that 
light intensity value is kept around a certain value. The latter 
value changes according to both the received system event 
(light turned OFF or ON) and/or information deduced from 
the instance of the effect meta-model (light intensity value 
deduced from the distance between light sources and light 
sensors).  

 
1) The concept of time in the diagnosis framework 
In the proposed approach, the issue of “time” is 

considered from two angles; the first angle is time as a 
physical variable in the physical formulas, the second angle 
is time as part of the diagnosis framework dynamics 
(behavioral model). In the first angle, time is used in the 
physical formulas defined in the Static Model (instance of 
the effect meta-model). The fact that time is a shared 
concept between the Static and the Dynamic model is the 
reason that the system model instance is divided into two 
interrelated parts as illustrated in Fig. 1. When present in 
these formulas, time becomes a shared concept between the 
Static Model and the Dynamic Model. The latter, if 
necessary, uses time in the description of the physical 
phenomena’s behavior, in which case is represented as a 
behavioral model. As for the diagnosis process, it describes 
the system’s behavior while taking into account the physical 
phenomena’s impact on the system’s overall behavior, 
which requires interacting with the Dynamic Model’s 
behavioral model; this is the second angle in which time is 
considered. The diagnosis process intercepts ambient system 
events to perform diagnosis (the technique is detailed in the 
next subsection). The challenge here is to consider both 
angles and their combination into one diagnosis dynamic 
framework capable of performing real time fault diagnosis. 
What is to be dealt with here also is the synchronization of 
time value with actual system’s time. It is the diagnosis 
process part of the framework that handles this task. 

IV. A DIAGNOSIS EXAMPLE 

In this example, we will see how diagnosis is performed 
when a bathtub is being filled. As illustrated in Fig. 3, we 
have a bathtub and three actuators controlled by the 
system’s controller: two water taps (a hot one and a cold 
one), and a water drain. There are also two sensors; a 
thermometer and a level indicator, whose readings keep the 
system informed about the state of the environment (water 
temperature and level) in real-time.  
 

 

Figure 3.  Components of the Bathtub Diagnosis Example 

We suppose that the provided ambient system’s 
behavioral model is composed of a set of finite state 
machines (FSM) describing the system’s overall behavior. 
In this example, we isolate the part that describes tasks that 
are related to the bathtub behavior. Fig. 4, is a simplified 
proposal of what the bathtub FSM would be. In this 
demonstrative example, we will see a simplified diagnosis 
example on a specific task; “filling bathtub” state of the 
FSM. The latter task and its relative transitions are the parts 
that are bold in Fig. 4. 

For this particular example, the temperature value that is 
requested by the system is 50°C and the level is 150 liter. 
This is represented by the entering transition to “filling 
bathtub”, the instantiation of this transition is: 

Start Filling [50 ; 150] 
The diagnosis process part of the diagnosis framework 

as illustrated in Fig. 1, listens to system events (Start Filling 
[50 ; 150]). Afterward, the diagnosis process would start 
performing diagnosis tasks related to the “filling bathtub” 
state. In this example, we will consider a simple diagnosis 
task consisting in comparing, at every point in time, the 
expected values of water level and temperature with actual 
values read by the sensors. The comparison takes into 
account a tolerance value defined by the diagnosis process 
as a parameter of the physical law instance. A global 
variable “time” is set to keep trace of elapsed time since the 
beginning of the diagnosis process. The “time” unit is 
chosen to be “seconds” so no conversion is needed when 
used in physical laws. Both the water temperature related 
and the water level related physical laws involve 
quantitative time constraints that can be described using 
MTL.  

In the first part of this example, only physical laws that 
are related to water level are considered. The diagnosis of 
water temperature is dealt with in the second part. The 
mathematical formulas of these physical laws are:  

Water Flow Ambient Law: 

Ambient_Water_Quantity=  
Water_Quantity(Hot)+Water_Quantity(Cold) 

(1) 

Water Flow Law for Hot and Cold Water: 

Water_Quantity(Hot)=                 
L0(Hot)+Water_Discharge_Rate(Hot)xtime 

(2) 

Water_Quantity(Cold)= 
L0(Cold)+Water_Discharge_Rate(Cold)xtime 

(3) 



 

Figure 4.  Simplified FSM describing bathtub behavior 

It is to be noted that “Ambient Water Level”, which is a 
sensor’s reading given by the water level indicator in liters, 
and “Ambient Water Quantity” which is calculated by the 
Water Flow Ambient Law in cm3, represent the same entity, 
which means that they are comparable entities after 
applying a simple rule of physical unit conversion from liter 
to cm3. Moreover, L0 (Initial level) is considered as null for 
simplification reasons. These physical laws and other 
components of the effect meta-model instantiating the 
ambient system by the diagnosis process are represented by 
the rectangles in Fig. 5. 

The diagnosis process performing bathtub water level 
diagnosis uses information taken from this instance of the 
effect-based meta-model corresponding to every point of 
time Diagnosis is performed. So, knowing the system’s 
water discharge rate value for hot and cold water, at any 
given time (timer value) the diagnosis process knows both 
the value of the water level detected by the level indicator 
sensor and the value of the expected water level calculated 
by the stated physical laws. This information is used to 
perform diagnosis. Let us suppose that we have a constant 
“Water Discharge Rate” of 140cm3/s for Cold water and 
110cm3/s for Hot Water. Let us also suppose that diagnosis 
over water level is performed periodically every 3 seconds. 
TABLE I illustrates the trace of the diagnosis process for 
the first 15 seconds after the order to the actuators (water 
taps) has been transmitted (“timer”=0 being the moment the 
order has been transmitted). 
The first two null values given by the level indicator sensor 
at the first and second diagnosis can be explained by the 
fact that 750 cm3 of water is not enough to fill the bathtub 
floor so that water is detected by the sensor that is fixed 
usually on the bathtub side. In this example, we insist on 
the fact that, so far, the output of the diagnosis are 
information describing the expected state of the system 
after the proper execution of the system’s command and 
that the framework does not impose a way of using the 
generated diagnosis information, nor how to compare them 
with actual sensors’ readings. The Diagnosis results might 
be used for textual warnings to the user of the ambient 
system as a feedback on what is going on and on whether 
or not its requested actions are being properly executed by 
the system, or, in other cases, it might be used by the 
ambient system itself as input information to a certain 
control mechanism for fault correction.  

 

Figure 5.  Effect-based model instance implementing the static model 
related to bathtub level diagnosis 

TABLE I.  WATER LEVEL DIAGNOSIS TRACE FOR THE FIRST 15 
SECONDS 

Time Ambient Water Quantity 

(From effect Model)  

Ambient Water Level 

(From Level Indicator) 

Diag-
nosis 

0 s 0.00 cm3 (0.00 liter) 0.00 liter (± 2) OK 

3 s 750.00 cm3 (0.75 liter) 0.00 liter (± 2) OK 

6 s 1500.00 cm3 (1.50 liter) 1.42 liter (± 2) OK 

9 s 2250.00 cm3 (2.25 liter) 2.00 liter (± 2) OK 

12 s 3000.00cm3 (3.00 liter) 2.67 liter (± 2) OK 

15 s 3750.00 cm3 (3.75 liter) 3.04 liter (± 2) OK 

 
These control mechanisms have the particularity to be 
created at run-time. Using available actuators, those control 
mechanisms would have been used to correct water level 
when a fault is reported by the diagnosis process. For 
instance this can be done by increasing the water discharge 
rate when the level is less than expected and opening the 
water drain when the level is more than expected. The issue 
of system’s behavioral control is not detailed in this paper. 

It is to be noted that when dealing with water level 
diagnosis the dynamic part of the system model instance is 
not involved since we consider that in this case there are no 
non-negligible physically defined delays between actuator 
actions (filling bathtub with water) and the sensors 
responses (detecting the corresponding water level in the 
bathtub). This is, of course, not the case in the second part 
of the example which is the water temperature diagnosis 
part.  

In this second part of the example, we deal with water 
temperature diagnosis. Here the water temperature elevation 
is incremental over time. In fact the time between the 
emission of water with a given temperature and the 
detection of that temperature is non-negligible. Thus this 
delay in detecting, by the sensors, the physical phenomena’s 
actions on the environment should be taken into 
consideration and should appear somewhere in the system 
model. In reality the incremental heat elevation is caused, 
according to enthalpy theory [12], by total accumulated 
quantity of energy Q added to the system by the actuator, 
this value is calculated using an integration of the 
instantaneous amount of power P generated by the actuator 
(we will call this effect “Heat Emission Effect”) over time: 



Q = ∫[ti,tf]P(t)dt [joule]   (4) 

where ti is the instant where the effect starts and tf is the 
instant where the effect ends. To be able to perform discrete 
calculations, this integral is converted into a sum of instant 
power values in time: 

Q = ∑[ti,tf]P(t) [joule]  (5) 

It is to be noted that in this method the calculated current 
temperature value depends on both, the current produced 
power value (which is generated by the heat of the water), 
and the previous (at t-1) calculated energy value. To 
calculate the ambient temperature of the water we use the 
enthalpy formula that states that at a constant volume and 
pressure: 

m.c=∆H/∆T (6) 

where c is the water specific heat capacity, which is the 
amount of heat required to change water’s temperature (The 
volumetric heat capacity of water is 4.1796 J.cm-3.K-1 [13], 
conversions from Kelvin to Celsius ought to be considered 
later), v is the total volume of the water (its value in cm3 can 
be deduced at any given time using (1), (2) and (3)), ∆H is 
the enthalpy variation and ∆T is the temperature variation. 
Under constant (atmospheric) pressure the quantity of heat 
Q received by a system is equal to its enthalpy change ∆H. 
So a body of volume v where the temperature (which is the 
value to be calculated and compared with thermometer 
reading) varies from ti to tf receives the amount of heat: 

Q = ∆H   (7) 

To apply this to the effect-based model, an effect 
representing the heat emission from the actuators is 
instantiated. We call it “heat emission effect”; this effect has 
the property power that we will call “heat power” (the 
instantaneous amount of power P described earlier). The 
later along with other properties related to other effects, 
other actuators and/or other sensors will be used to evaluate 
all the previously stated laws that are related to “heat 
emission effect”. In fact results from physical laws that are 
related to water level (Water Flow Ambient Law) are to be 
used in heat related laws. As for the values we will adopt the 
same constant discharge rates for hot and cold water as the 
previous part of level diagnosis. So we have a constant 
discharge rate of 140cm3/s for Cold water and 110cm3/s for 
Hot Water, which results in 250cm3/s of total water 
discharge rate. We also consider that the system knows that 
an overall “heat power” of 2500J/s is produced by both Cold 
and Hot Water. For simplification reasons we suppose that 
this value is known by the system, although in reality it 
should be deduced after applying more complex laws that 
enable to deduce the power radiated by water at a given 
temperature. So in this case we will directly suppose that we 
have the property “heat power” (with value of 2500J/s) as 
an effect property of the “heat emission effect”. We also 

suppose we have a constant loss of heat caused by the direct 
contact of the water with ambient air and the bathtub 
material, this heat loss is represented by a “heat power” of -
500J/s; to differentiate from previous heat property we call 
this property “heat loss”. The model is flexible in the sense 
that it offers many ways to represent this loss in heat; the 
only constraints are to have an effect property of type “heat 
power” and of a negative value. So to align this idea to the 
effect model, the “bathtub” itself is instantiated as an 
actuator so that it can produce “heat emission effect” with 
“heat power” value of -500J/s. As a total we then have a 
total “heat power” of 2000J/s produced by the combination 
of heat loss, the Cold water and the Hot water. The resulting 
instances in the effect model are illustrated in Fig. 6. The 4 
heat related physical laws are simplified to one instance. 

 
In this example, the bathtub behavior can be simulated 

to a 2kW electric kettle. In reality the electric kettle heating 
function can be realized by an electric water heater. This 
technique is very similar to that used in Hot tubs (called also 
Spas).  

 
During the first 3 minutes (180 seconds), we obtain the 

diagnosis traces illustrated in TABLE II (traces are taken 
every 30 seconds and initial temperature is considered to be 
null “0K”). To better understand the results let us consider 
the diagnosis at the second 150. The water quantity 
calculated by the Water Flow Ambient Law is 37500cm3 
[=250cm3.s-1x150s]. The accumulated water heat energy, 
calculated by (2), is 300000J [=2000J.s-1x150s]. The 
ambient water temperature is calculated by (3) and (4) as it 
is the result of the temperature augmentation at t=150s, 
which is 1.9140K [=300000/(m.c); m=37500cm3; c=4.1796 
J.cm-3.K-1], plus the temperature at t=149s, which is equal to 
285.1947K. The final result is 287.1088K (13.95°C). This 
value is compared with the sensor reading which is 13.07°C, 
the comparison gives a successful diagnosis since we have a 
tolerance margin of 2°C.  

 
 

 
Figure 6.  Effect-based model instance implementing the water 

temperature diagnosis. 

 
 
 
 



TABLE II.  WATER TEMPERATURE DIAGNOSIS TRACE 
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0 0 . . 17.03(± 2) Fault 

30 7500 60000 57.42 (-215.72°C) 15.79(± 2) Fault 

60 15000 120000 114.84 (-158.30°C) 13.23(± 2) Fault 

90 22500 180000 172.26 (-100.88°C) 11.64(± 2) Fault 

120 30000 240000 229.68 (-43.46°C) 10.02(± 2) Fault 

150 37500 300000 287.10 (13.95°C) 13.07(± 2) OK 

180 45000 360000 344.53 (71.38°C) 69.09(± 2) OK 

 

V. CONCLUSION AND FUTURE WORK 

In this paper, we introduced an original method for the 
diagnosis of ambient systems; the method is based on a 
diagnosis framework. This framework is composed of a 
diagnosis process and an effect-based model. The effect-
based model takes into account the particularities of ambient 
environments (no predetermined relation between actuators 
and sensors). We introduced an effect-based model to 
identify the links between actuators and sensors depending 
on the physical effect produced by the actuators and the 
physical properties detected by sensors, the links are defined 
by the corresponding physical laws. In addition of its 
compatibility with ambient systems, this method offers the 
freedom to choose the level of detail in which the system is 
described depending on the context of use, since the 
physical laws can follow different levels of granularity. 
Along with the effect-based model the system model is 
composed of a dynamic model that describes some of the 
physical phenomena’s behavior and a diagnosis process that 
uses the information from the other models to perform real-
time diagnosis. 

As future work we envision to fully evaluate the 
diagnosis process part of the model and the dynamic model 
part of the framework. The current framework is designed 
mainly for fault detection (discovering the existence of 
fault) is not handled yet. 

 
We consider adding a probabilistic model for error isolation. 
The idea is to label the devices with a failure probability 
value, so when an error is detected, we would have 
additional information for the identification of its source. 
Although the user is the center of an ambient intelligent 
system, as the main purpose of the system is to satisfy 
his/her preferences, the user is not yet represented in our 
proposed model. In fact, contrary to the ambient systems’ 
behavior which is on many levels predictable and thus can 
be modeled, the behavior of users is unpredictable, which 
makes its modeling intricate. However explicitly modeling 
user behavior, tasks and needs would allow the diagnosis 

framework to perform more accurate diagnosis. Finally, 
real-scale tests in an experimental ambient environment will 
be carried out in order to validate the diagnosis framework. 
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