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Abstract—As the population in many countries is steadily
aging, allowing elderly people to stay longer at home is a
growing concern. Ambient Assisted Living (AAL) proposes
new techniques to help people remain autonomous, based on
ambient intelligence. We present an ontology-based framework
in which ontologies enable the expression of users’ preferences
in order to personalize the system behavior. They are also used
for the discovery and interconnection of devices, the storage
and retrieval of collected data and the transmission of actions.
This way, the behavior of the system may be expressed using
high-level logic rules. Another important contribution is the
addition of a diagnosis service that monitors the run-time
behavior of the AAL system only by using sensors discovered
opportunistically at run-time and knowledge about physical
laws, not pre-defined control loops. Finally, this paper describes
an actual implementation, with precise technological details,
in order to prove the feasibility of the technical choices, and
provide implementation ideas for future projects.

Keywords-Ambient Assisted Living (AAL); ambient intelli-
gence; ontologies; diagnosis; reasoning.

I. INTRODUCTION

Due to the demographic change towards an aging pop-
ulation, society must find ways to assist elderly people to
stay active at home longer. While currently this support is
mainly provided by human caregivers, technology will play
a more and more important role both for elderly persons
and caregivers. In Europe a roadmap has been defined in
the last years called Ambient Assisting Living (AAL) [1].
The business context of AAL is rich in terms of technology
(from tele-health systems to robotics) but also in terms
of stakeholders (from service providers to policy makers,
including core technology or platform developers).

The work presented here has been carried out within
the CBDP project (Context-Based Digital Personality) [2],
which aims at creating a framework for building various
kinds of ambient-intelligent applications, based around the
concept of Digital Personality for representing the pref-
erences of users. Aside from AAL, several application
domains were considered, such as digital TV guides or
assistants for workers at a construction site. Therefore the

CBDP framework addresses a wide variety of requirements.
In this paper however, we focus exclusively on the parts of
the CBDP framework relevant to AAL.

Our approach is entirely based on ontologies. Not only
are ontologies used to capture domain knowledge, but more
importantly they serve as the runtime mechanism that allows
the interconnection of devices, the exchange of data and the
execution of actions. Moreover, by examining the sequence
of requested actions and observed sensor values found in the
ontology, a diagnosis process is able to monitor the run-time
behavior of the system and to detect unexpected patterns.

The ontology is presented in Section II. Section III
describes the CBDP framework and gives implementation
details; Section IV focuses on diagnosis. Section V describes
a typical AAL use case, and goes through its complete
realization. Section VI introduces some related work, and
compares our approach with published results. Finally Sec-
tion VII gives directions for future work.

II. AN ONTOLOGY FOR AAL APPLICATIONS

CBDP is built around an ontology: this section justifies
this choice and describes the ontology used.

A. Why use ontologies?

AAL applications are trans-disciplinary by essence (for
instance, they can mix automatic control with modeling of
user behavior), therefore the ability to reuse knowledge and
integrate several knowledge domains is particularly impor-
tant for them. Furthermore, the field of AAL is very open
and changing, so it is not possible to base an AAL platform
on a fixed set of features, on a fixed set of data models:
extensibility is key. In addition, an AAL environment may
require the interoperation of software and hardware devices
from a variety of suppliers: there must be a standard way of
exchanging knowledge.

Ontologies are well-adapted to all these needs [3]: an
ontology framework provides a standard infrastructure for
sharing knowledge. In addition, semantic relationships such
as equivalence may be expressed between various knowledge
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Figure 1. First level of the CBDP ontology.

sources, thus permitting the easy integration of several
sources or domains. In addition, one can easily extend
an ontology to take into account new applications or new
devices. For these reasons, leading AAL projects such as
OASIS (Open architecture for Accessible Services Integra-
tion and Standardisation) have put a strong emphasis on
ontologies [4]. Being oriented toward personalization, CBDP
explicitly introduces an ontology module for modeling the
“Digital Personality” of the user.

B. Ontology used by CBDP

The ontology defined for CBDP is built around the OWL
language [5], which is based on the Resource Description
Framework (RDF). RDF represents knowledge as a set of
triples or statements of the form {subject, predicate, object}.
It models different interrelated domains in a modular way,
so as to enable its easy adaptation to new applications.
In order to put into practice the aforementioned notion
of reusability, two of the domains are based on existing
ontologies. Figure 1 depicts the first level of the ontology;
the main domains are as follows:

• Device: this part is based on the DogOnt [6] ontology
that has been simplified for our purpose, while keeping
the modeling axes (typology, functionality and state).

• Digital Personality: a class Person allows the repre-
sentation of a human being, and a Digital Personality
stores the person’s preferences in order to personalize
the services offered to him/her.

• Location: a location model is required because most of
the services offered in the AAL domain must know the
position of the user (in/out the house, in the bedroom/in
the kitchen, etc.) and of the devices (sensors and
actuators).

• Time: we import W3C’s existing Time Ontology [7]
without any change.

• Diagnosis: we introduce the concept of physical effect
(see Section IV below), to compute the expected result
of the action of an actuator onto a sensor.

The ontology is loosely coupled with the framework, so
to a great extent it may be changed without affecting it.
However, the basic feature of sending commands to actuators

rely on specific core classes and properties that may not be
changed: this part is depicted on Figure 2.
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Figure 2. Ontology classes required for proper operation of the framework.

III. CBDP FRAMEWORK

This section describes the CBDP framework, and how it
can be used to build AAL applications.

A. Architecture

The main goal of the CBDP Framework is to dynamically
handle ontology data and initiate actions when specified
conditions in the ontology are achieved. CBDP is written in
Java; it is based on OSGi (Open Services Gateway initiative
framework) [8], which allows one to build applications
flexibly by combining bundles. In CBDP an application is
composed of CBDP’s core bundles (the Context Reasoner
and the Sensor/Actuator Layer, described in Sections III-B
and III-C, respectively) and application-specific bundles
(see Figure 3). In our case:

• AAL-specific application bundle: contains the rules that
define the intended application behavior, meant to assist
the user according to his/her needs.

• Zigbee Driver bundle: allows the exchange of data
between the physical devices (connected via a wireless
Zigbee network) and the CBDP Framework.
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Figure 3. Architecture of the CBDP framework.



B. Context Reasoner and Rules

The Context Reasoner is in charge of managing the infor-
mation coming from external components (AAL Application
or Zigbee Driver) by structuring them according to the
AAL ontology. Therefore, it provides methods to add new
information, retrieve stored information, and perform queries
about that information. Manipulation of the ontology is done
using the Jena library [9].

Another feature of the Context Reasoner is its rule engine.
Its purpose is to perform actions to help the user and
facilitate common tasks, based on a set of application-
specific rules (hence the rules are provided by the AAL
Application bundle). The rules are Horn clauses [10]: a rule
is composed of premises that determine the situations in
which the rule applies, and a conclusion, that basically adds
a new “fact” into the ontology, such as a new property value.
An example of such a rule is given in Section V-A below.
Rules are applied by Jena’s basic reasoning engine, using
forward chaining.

For performance reasons, the rule engine does not apply
all rules at each instant. The rules are applied only when
a change in the ontology matches a filter (i.e., happens
in a specific part of the class hierarchy). The filters are
application-specific; here they are defined by the AAL
Application bundle. At first one may use a “catch-all” filter;
performance can be improved later by refining the filters.

C. Sensor/Actuator Layer

The Sensor/Actuator layer (S/A layer) connects the sen-
sors and actuators to the ontology. The communication is
two-way:

• Sensor data (sent through Zigbee) is stored in the
ontology. This allows one to perform semantic queries
and semantic reasoning over sensor data.

• A command request inserted in the ontology (using
a property called hasCommand) triggers the actual
emission of a command to the actuator.

The module responsible for connecting the sensors to
the Context Reasoner is based on the use of a specific
OSGi service called EventAdmin. A communication protocol
through OSGi events has been defined in order to allow
the communication between the drivers and the S/A layer.
Section III-D describes this protocol.

D. Communication between sensors/actuators
and the ontology

This section deals with the protocol used to exchange on-
tology knowledge using OSGi events. An event is composed
of a topic and of a list of properties ({propertyName; prop-
ertyValue} pairs). We have defined two kinds of events: 1) to
report sensor data, 2) to send commands to actuators. For
both kinds of events, the OSGi topic string is built according
to the pattern CBDP/AAL/deviceClass. CBDP and AAL
are invariant: they reference the general framework and our

Sensor information
instance.id URI identifying the sensor (String)

1) When referencing a dataProperty present in the ontology
data.property Name of the “simple data” property (String)
data.property.value Value (depends on property: Boolean, Double,

Integer, String...)

2) When referencing an objectProperty present in the ontology
object.property Name of the “object” property (String)
object.property.range Name of the class referenced by the property

(String)

Table I
OSGI PROPERTY NAMES USED TO SPECIFY OWL TREES.

application-specific ontology; deviceClass is the name
of the sensor class that sends data, or actuator class that is
to receive data. The remainder of this section gives details
on the actual contents (list of properties) of the events in
both cases.

1) Reporting sensor data: When sensor data is reported,
a sub-graph (actually a tree) must be created in the ontology.
An edge in this tree may be of two kinds: connecting an ob-
ject to a simple value such as an number (“dataProperty”), or
connecting an object to another object (“objectProperty”). A
convention using OSGi’s properties allows us to completely
describe the tree. At each node in the tree to be created, a
set of datatype and object properties may be specified. Each
edge of the tree is numbered using a simple convention: from
the top of the tree, each time an edge is followed, a dot and
the index of the edge under its parent node are appended
to the OSGi property name (see the examples on Figure 4).
This permits the description of each edge and each node to
be created. The basic property names (without trailing dots)
are given in Table I, and a complete example is given on
Figure 4. It represents an event stating that the light level is
500 lux in the kitchen at the date {Calendar value}.

2) Sending actuator commands: Sending a command to
an actuator is done using the following convention: a new
statement must be added in the ontology, with a relation
named “hasCommand” (see Figure 2 above). Such a state-
ment may be added by a reasoning rule, or by application
code calling the context manager.

When the S/A layer detects a new “hasCommand” state-
ment, it serializes the corresponding sub-tree of the ontology
graph into an OSGi event (using the same convention as
above) and sends it to the driver of the target actuator.

E. Deployment

The OSGi implementation used by CBDP is Apache
Felix. The use of Java and OSGi permits to deploy the
framework on a variety of platforms. We have conducted
tests on desktop PCs (under Windows and MacOS) and
on embedded systems (on a set-top-box running Linux
and on Aonix Perc) [11]. Perc is a Java virtual machine
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Figure 4. Example of an event containing sensor data.

for embedded systems that can be deployed on resource-
constrained targets while providing real-time and safety
guaranties. This demonstrates the adequacy of CBDP for its
target applications, user assistance in ambient environments,
i.e., in non computer-centric settings.

IV. DIAGNOSIS

Ultimately, the goal of any AAL application is to activate
some actuators, based on data provided by some sensors.
However, sensors and actuators may suffer failures. There-
fore the system should check autonomously whether the
intended actions are performed correctly.

A. Rationale

In software, mechanisms such as exceptions and error
codes report whether a procedure executes successfully or
not. Likewise, an actuator can provide a return code, but
generally this reflects only the way the orders are transmitted
to the actuator, not their actual execution. For instance, when
the system activates a light bulb, it receives an acknowledge-
ment that confirms the switch-on of the electrical circuit,
but this does not necessarily mean that the bulb is really
on (the bulb may be damaged for instance). To address
the issue, control theory could allow one to pre-determine
closed control loops using designated sensors. However, the
particularity of ambient systems is that physical resources,
mainly sensors and actuators, are not necessarily known at
design time, but are dynamically discovered at run-time, so
such control loops cannot be pre-determined.

Therefore, a reliable AAL application needs a way to
assess at run-time the status of its sensors and actuators.
We propose an approach in which the system relies only
sensors already available, thereby not requiring the addition

of specific devices for diagnosis purposes. The sensors that
may be used to perform diagnosis are discovered at run-time.
When a sensor measures a physical parameter, the system
may deduce sensor/actuator “health” status by comparing
actual values with expected sensor values.

To achieve this, we propose a diagnosis framework in
which the characteristics of actuators and sensors, as well
as the physical effects involved, are precisely described.
The following paragraphs provide a short summary of our
approach; refer to [12] for more details.

B. Modeling physical effects

Effects are modeled in order to simulate the physical
consequences of actions in an ambient environment. Each
effect is characterized by a set of properties: some define
the effect (at the source actuator, e.g., the light intensity
emitted by a light bulb), some are observable by a sensor
(e.g., the light intensity received by a light sensor).

Depending on the application’s needs, an effect can be
defined at various levels of granularity. For instance, the
light emitted by a light bulb could be modeled either using
classical laws of physics for light propagation, or using a
simple boolean law (“if a light bulb is on in a room then
the light sensors that are in that room should detect light”).

C. Using effects for linking actuators to sensors

As ambient systems are highly dynamic, one cannot
explicitly link related sensors and actuators. The concept of
effect allows for easy decoupling of devices, as illustrated
by Figure 5. An actuator class is linked to the effects it
may potentially produce. Similarly a sensor class is linked
to at least an effect property. At a generic level, there is
a link between a given effect (e.g., emission of light) and



the corresponding detectable properties (e.g., light intensity)
through the hasProperty relation.
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Figure 5. The diagnosis framework adds to the general-purpose ontology
(gray part at the top) a few concepts to describe the effects and their
detectable properties.

Knowing the effects produced by any actuator in the sys-
tem, and knowing the effect properties sensed by any sensor
in the system, it is therefore possible to determine and update
at run-time the links between actual sensors and actuators.
Hence it is possible to compute the expected readings of the
sensors using physical laws. Once the expected results have
been determined, the system checks if they are consistent
with the actual readings.

V. EXPERIMENTATION

This section introduces a complete AAL scenario in which
the CBDP framework is able to automate tasks, it shows how
diagnosis is performed, and it describes the experiments.

A. Use case: automatic light switch

We propose the following experimental scenario. It takes
place in a bedroom with a controlled lamp, a light sensor
and a presence sensor: “if the ambient light level is under
a threshold (specified in the Digital Personality of the user)
and if the user is present in the room, then the light must be
turned on”. Although simple, this scenario demonstrates all
the aspects of the system: sensor data gathering, reasoning,
command of actuators and diagnosis.

Let us suppose that the light level in the room is 80 lux
and then the user comes in. His Digital Personality states
that he wants the lamp to be on when the light level is
under 100 lux. The system takes the following steps:

1) The current light level (80 lux) has already been
detected and updated in the ontology. When the user
enters the bedroom, the presence sensor sends a noti-
fication to the driver through the Zigbee network. The
driver sends then an event to the framework and the
ontology is updated accordingly.

2) The framework detects that the value of a Presence-
Sensor has changed in the ontology, so the following
rule must be evaluated (cf. III-B):
IF a LightSensor value is <

{userPreference in the Digital Personality}

AND a PresenceSensor detects somebody

AND the LightSensor, the PresenceSensor
and the LightActuator are in the same room

THEN Turn the LightActuator on

This rule is written here in pseudo-natural language for
the sake of simplicity; in practice it is expressed in the
formal syntax specific to the Jena reasoning engine as
shown on Figure 6.
The reasoning engine reads the current light level, the
current presence status and the user preferences in
the ontology. The premises of the rule are true, so
the conclusion must be executed. To determine which
rules to apply, Jena uses a classical forward chaining
reasoning algorithm.

3) Therefore a new statement is added in the ontology:
{LightActuator, hasCommand, “on”} (cf. III-C and
III-D). In consequence, the framework sends an event
to the driver to indicate that the LightActuator must
be turned on.

4) The driver commands the light actuator through the
Zigbee network. This actually turns the light on.

[CMD_LIGHT_ON:
(?MS RDF:type AMI:PresenceSensor),
(?LS RDF:type AMI:LightSensor),
(?LA RDF:type AMI:LightActuator),
(?R RDF:type ?RT),
(?RT RDFS:subClassOf AMI:Room),
(?MS AMI:isIn ?R),
(?LS AMI:isIn ?R),
(?LA AMI:isIn ?R),
(?DP RDF:type AMI:AAL_DP),
(?DP AMI:isCurentDP ?curDP),
equal(?curDP,’true’),
(?DP AMI:low_AAL_LightThreshold ?LLT),
(?MS CORE:realStateStringValue ’personInside’),
(?LS AMI:realIntValue ?LMV),
lessThan(?LMV,?LLT),
(?F RDF:type AMI:OnOffFunctionality),
(?LA AMI:hasFunctionality ?F),
(?C RDF:type AMI:OnCommand)

-> (?F AMI:hasCommand ?C) ]

Figure 6. Example of rule (“turn the light on”) expressed in Jena’s syntax.

B. Diagnosis

At this point, the framework performs diagnosis so as
to determine if the action has been executed correctly. The
LightActuator is a “light effect” producer; the LightSensor
measures the “light intensity” value of “light effect”. They
are in the same room, so a link between them is deduced
automatically. Moreover, if some position reporting system
is available, then the physical law associated with “light
effect” (that calculates the light intensity) takes into account
the actuator-sensor distance. The steps go on like this:

5) The diagnosis framework calculates the expected light



level at the light sensor by applying the formula
associated with “light effect”. The result is 120 lux.

6) The light level actually measured by the light sensor
is still 80 lux, so the system deduces that there is a
failure. The source of the failure (sensor or actuator)
is a priori known with a limited probability only, but
a second sensor in the room may increase it.

7) The system finds it most probable that the bulb is burnt
out. An error notification is generated so that the user
1) confirms the cause the problem, and 2) possibly
to fixes it (often, even an elderly person is capable
of replacing a light bulb). For a discussion on the
acceptability of notifications in a home environment,
see for instance [13].

C. Implementation and Results

This experiment uses the standard CBDP framework, with
a bundle containing its specific rules. The experiment was
conducted in two ways:

• using a simulator of the sensors, actuators and physical
environment,

• using physical devices in an actual room.
Figure 7 shows the interface of the simulation environ-

ment. The experimenters can act on the light level of the sun,
on the motion sensor, and they can also introduce a defect
in the light bulb. Both in simulation and in real conditions
the system displays a message with the current diagnosis
(Figure 8). The tests performed showed that the example
runs as expected.

Figure 7. Interface of the simulated environment.

VI. RELATED WORK

Ontologies are often at the heart of ambient-intelligent
systems, and especially AAL systems, such as in OA-
SIS [4]. In 2003, CoBrA (Context Broker Architecture)
was an ontology-based framework for ambient settings [14].

Figure 8. Window showing the results of the diagnosis.

In 2004, SOUPA (Standard Ontology for Ubiquitous and
Pervasive Applications) [15] was one of the first attempts to
define an application-agnostic ontology for ambient systems,
but it is specifically aimed at agent-based architectures.
More recently, Paganelli et al. [16] introduces a tele-health
platform, which is based on an ontology for describing con-
text and medical conditions. The SOPRANO project [17],
[18] defines a specific ontology that serves as a unifying
vocabulary between software components. In our work, the
ontology is specifically used to personalize the system: it
stores preferences, and contains application-specific mod-
ules. Moreover, we not only reason to infer new facts about
context as done in many platforms [19], but also to trigger
application-specific behavior, and to actually trigger actions,
i.e., send commands to actuators. This makes the framework
flexible and allows the easy integration of additional services
such as the diagnosis framework described in Section IV.

Our choice of using the OSGi middleware was motivated
by previous successful attempts in the field of ambient in-
telligence, such as in the AMIGO IST project [20]. CBDP’s
generalized reliance on ontologies makes the use of OSGi
very consistent with the rest of the framework.

Some works focus on ontologies for specific domains. For
instance, Hois [21] describes a well-grounded framework for
the description of spatial relationships and spatial reasoning.
This kind of contributions could be integrated into the CBDP
framework, due to the reusable nature of ontologies.

VII. CONCLUSION AND FUTURE WORK

We have presented a complete framework that supports
the creation of AAL applications. This framework is based
on the use of an ontology at the core of the system.
This ontology contains application-specific knowledge and
stores user preferences (“Digital Personality”). Besides it
handles all the run-time information flows: it aggregates
sensor data, allows rules to be applied on this data so as
to generate commands, stores the commands, and provides
the commands to the actuators.



Using an ontology allows one to specify the behavior of
an AAL application in terms of easy-to-write logic rules.
These rules can rely on any piece of knowledge present in
the ontology, therefore they are not limited in any way by
the core ontology that comes with the CBDP framework.
Such extensibility is made easy by the use of widespread
knowledge engineering standards, namely RDF/OWL.

The other significant contribution of this paper is the
diagnosis framework that monitors the run-time behavior
of an AAL system by observing changes in the ontology.
Currently we take into account only the current state of the
system. In reality, the relevant measure might not be the
current absolute value of a physical parameter, but rather
its relative evolution. For instance, when light is switched
on, it may be most relevant to consider the relative increase
of the light level, as the absolute value may vary other time
without any action being taken (depending of the intensity of
the sun for instance). This prompts us to introduce dynamics
in the diagnosis framework. Likewise, some physical laws
may depend upon quantitative time (for instance, the effect
of a radiator in an initially chilly room is a slow increase of
temperature over time). This is currently being investigated.

We also plan to test such a system in real scale, for
example at the homes of elderly people. This will allow
us to refine the rules that define the system behavior.
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