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Abstract

We present a component-based description lan-
guage for heterogeneous systems composed of several
data flow processing components and a unique event-
based controller. Descriptions are used both for gener-
ating and deploying implementation code and for check-
ing safety properties on the system. The only constraint
is to specify the controller in a synchrounous reactive
language. We propose an analysis tool which transforms
temporal logic properties of the system as a whole into
properties on the events of the controller, and hence into
synchronous reactive observers. If checks succeed, the
final system is therefore correct by construction. When
it is not possible to generate observers that correspond
exactly to the specified properties, our tool is capable
of generating approximate observers. Alghough the re-
sults given by these are subject to interpretation, they
can nevertheless prove useful and help detect defects or
even guarantee the correctness of a system.

1. Introduction

We describe here a method for the design and code

generation of heterogeneous software systems, which al-

lows the specification of safety properties on the system

and their formal verification. We distinguish two as-

pects in the design of a heterogeneous system: the data

processing operations performed to produce the outputs

from the inputs, and the control of the system, which de-

termines the schedule and parameters of the operations.

Data processing can be described by data-flow models,

whereas control is described by state machines or syn-

chronous languages. Designing control independently

This work has been performed in the context of the Usine Logicielle

project of the System@tic Paris-Région Competitiveness Cluster.

from data processing results in a separation of concerns,

which allows the formal verification, re-use and inde-

pendent modification of the parts of the system.

We propose a modular approach, in which data pro-

cessing is modeled by a number of processing compo-
nents which communicate through data flows, and con-

trol is modeled by a unique control component whose

inputs and outputs are pure events. Each processing

component may be described in an adapted formalism

(Simulink, C code, etc.). The controller must be written

in a reactive synchronous language (Esterel, Lustre, Sig-

nal, etc.) in order to take advantage of model checking

tools. An heterogeneous system is described as a net-

work of components, consisting of any number of pro-

cessing components and a unique controller.

For system designers, meaningful properties are

global properties, that apply to the inputs and outputs

of the application. We consider only safety properties, a

subclass of Linear Temporal Logic (LTL) formulae, and

we propose an automatic method which translates these

properties into properties expressed on the control com-

ponent. The latter properties can be automatically trans-

lated into observers written in the same synchronous re-

active language as the control component. In this way,

formal methods can be used to check the control com-

ponent directly: what is proved is what is executed.

The paper is organized as follows. Section 2 pro-

vides a short review of related work, and justifies the

choice of purely event-driven control components. Sec-

tion 3 introduces ADLV, our Architecture Description

Language for Verification, which is used for both the de-

scription of the application and of the safety properties.

Then, we explain how safety properties can be trans-

lated, first into intermediate formulae (section 4), and

finally into observers on the control component (sec-

tion 5). Section 6 gives conclusions and perspectives.
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2. Related Work and Objectives

Most systems are hybrid by nature because they

mix continuous behaviors and discrete transitions at

some points. For example, when the temperature of

an ice cube gradually increases, the laws that determine

its physical parameters are locally continuous, but they

change, first when ice turns into liquid water, and sec-

ond when liquid water evaporates. One can think of this

system as a state machine capable of switching between

states (solid, liquid, gas) within which a continuous de-

scription applies. Differential equations work well when

describing each state independently of the others, but to

describe the system as a whole, qualitative simulation

may prove useful [1]. Qualitative simulation discretizes

continuous parameters into regions delimited by land-
mark values and offers a homogeneous discrete frame-

work for simulating hybrid systems. Work on this topic

has recently been extended to hybrid automata [2, 3].

Manufactured systems, and especially heteroge-

neous ones, are almost always hybrid systems. Indeed,

they often mix traditional continuous automatic control

methods with digital supervision that switches the sys-

tem among a number of different states. This led to the

development of hybrid control. Hybrid control methods

can generally be viewed as hierarchic control, with some

kind of automaton at the top level, and continuous con-

trol at lower levels [4]. The system thus performs tran-

sitions between partitions of the continuous state space

where its behavior is purely continuous.

The commonly used languages for control in the

industry are generally based on discrete transition sys-

tems such as state machines. This is the case of Es-

terel [5], Lustre [6], Signal [7], StateCharts/SyncCha-

rts [8], Grafcet/Sequential Function Chart [9]. However,

these languages generally allow operations on numeri-

cal values as source of events. For instance, if a is a

numerical input, one can specify the event a < 23. This

convenience has two drawbacks. First, it mixes “pure”

control and data operations inside the controller. Indeed,

whereas complex operations such as FFTs are naturally

thought of as separate blocks, simpler operations are

more likely included in the controller. Second, although

theoretical model checking techniques for infinite-state

systems exist (see for instance [10] for programs with

unbounded integer variables), commercially available

model checkers can generally operate on purely event-

based controllers only. Thus in practice, one must ex-

clude all data operations from the controller in order to

use model checking.

As a consequence, our framework clearly distin-

guishes two parts in a system: (1) an operative sub-
system, consisting of components that communicate

through data flow and possibly events, (2) a control com-

ponent whose inputs and outputs are only events. This

allows formal verification tools to check properties on

the control component. However, if these properties

were to be specified on controller events, the verifica-

tion framework would be cumbersome to use. Indeed,

the primary vocabulary of the designer consists of the

application inputs and outputs, and possibly some inter-

nal signals, and cannot be restricted to controller events.

The approach presented here is original in that it

permits the specification of properties on the system

using natural semantics, for instance “component C is
never active when input E is greater than value V”.

These properties are then translated into the event-based

semantics used by the control component, for instance

“event Y is never emitted between an occurrence of X
and an occurrence of Z”, using the description which is

also used for generating the implementation. This guar-

antees the consistency of the transform applied to the

safety property and of the way implementation code is

generated: this code is correct by construction. The ver-

ification method thus follows the WYPIWYE (what you
prove is what you execute) principle [5].

Our purpose is not to produce a new formal verifica-

tion tool, but to design an analysis tool, capable of trans-

forming properties expressed on the system as a whole

into properties on the control component that can be pro-

cessed by the verification tools available on the market.

These tools are generally specific to the target language

(i.e. that of the control component), and often come bun-

dled with the language toolchain. In practice, once the

properties on the application have been transformed into

properties on controller events, they can easily be trans-

lated into observers [11] written in the target language.

In this way, the actual implementation code is checked,

so the WYPIWYE paradigm is applied a second time.

3. Architecture Description Language
for Verification

3.1. Description of Embedded Applications

We introduce here a method for describing a het-

erogeneous application as a set of processing compo-

nents that are activated and connected at the request of

a control component. This description is used both to

generate the actual implementation of the application

and to transform properties expressed on the applica-

tion into properties that can be checked on the control

component. We have designed the ADLV language (Ar-
chitecture Description Language for Verification) which

has both an abstract syntax and a textual concrete syntax
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regul on
regul off

brakes

current speed

accelerator

throttle

regul on

regul off

brakes pushed

brakes released

speed ok

speed nok

set target

start reg

stop reg

Controller << Esterel >>

brakes

brakes pushed

brakes released

BrakesCheck << Internal >>

current speed
speed ok

speed nok

SpeedCheck << Internal >>

current speed

set target

target speed

SpeedMem << Internal >>

target speed

current speed

regulated cmd

Regulator << Simulink >>

Figure 1. Component-based cruise control described in ADLV.

which extends OMG IDL1. This section is an informal

introduction to ADLV through the example of a cruise

control system depicted on Figure 1. In this diagram, the

following symbols are used for input and output ports:

event sink data flow input

event source data flow output

Processing components can either be “black boxes”

described in specific formalisms such as Simulink (e.g.

the Regulator component) or “internal” components di-

rectly described in ADLV (e.g. the three leftmost com-

ponents). In the former case, only the interface of the

component is described in ADLV, while internal com-

ponents are completely described in ADLV, and their

behavior is known to the ADLV analysis and code

generation tools. Internal components serve as adap-

tors between components of heterogeneous nature. For

example, the internal component BrakesCheck has a

boolean data-flow brakes input, and produces an event

each time the value of brakes changes. It produces

brakes pushed when brakes goes from false to true, and

brakes released for the other transition. This leads to the

following definition for BrakesCheck in ADLV concrete

syntax:

internal component BrakesCheck {
sink BoolFlow brakes_on;

publishes PureEvent brakes_pushed {
when brakes_on;

}
publishes PureEvent brakes_released {

when ! brakes_on;

1OMG IDL is an ISO-standardized Interface Definition Language

(ISO 14750), that is part of CORBA. See http://www.omg.org/
technology/documents/formal/corba_2.htm.

}
};

Likewise, SpeedCheck emits a speed ok event when

current speed enters the range of admissible values for

regulation (40..130 km/h), and emits a speed nok event

when it exits this range. Hence the following definition:

internal component SpeedCheck {
sink FloatFlow current_speed;

publishes PureEvent speed_ok {
when current_speed >= 40

&& current_speed <= 130;
}
publishes PureEvent speed_nok {

when current_speed < 40
|| current_speed > 130;

}
};

These two internal components perform an adap-
tation between data flows and the input events of the

controller. Thus, internal components play a key role

in managing heterogeneity. There is only one control

component per application (here, the Controller compo-

nent, which is written is Esterel) which is considered as

a black box which consumes and produces events.

The behavior of the cruise control is as follows: the

Simulink component calculates a “regulated command”

for the throttle. At startup, the accelerator pedal is con-

nected to the throttle. If the current speed is in the range

of admissible values, and the driver presses a “regu-

lation on” button, the output of the Regulator compo-

nent is connected to the throttle. As soon as the driver

brakes, the throttle is connected back to the accelera-

tor. To re-enable the cruise control, the driver must both

stop braking and press the “regulation on” button.There
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is therefore a dynamic connection between the throttle

and either the “regulated command” from the Regulator
component or the accelerator input. It is depicted as a

“switch” on figure 1.

ADLV descriptions can be used to generate the ac-

tual implementation of the system. We will not describe

these capabilities here, but rather focus on the checking

of safety formulae.

3.2. Safety Formulae

3.2.1. Canonical Safety Formulae

Temporal logic is often used to express properties of

reactive systems. In particular, Linear Temporal Logic

(LTL) is widespread and well understood, especially for

the verification of programs [12].

It is often critical to check that some property is “al-

ways true” or “never true”. In LTL, for some property

f , “ f is always true” is denoted by � f , “ f is never true”

is denoted by �¬ f . If we restrict f to the class of past
formulae, � f is a canonical safety formula [13]. Such

formulae offer a good expressive power [14], are simple

to use [15, 16] and easy to translate into synchronous

reactive languages such as Esterel or Lustre.

In our framework, past formulae are built from clas-

sical propositional operators (∨, ∧, →, ¬), past temporal

operators ( S [since], B [back to], �· [always], ♦·
[once], � [previous]), and predicates. The predicates

that system designers can use are given in table 1.

Type Meaning

s true when event s is present

s op k true when data flow s satisfies a com-

parison to constant k. op is a compar-

ison operator among {<,≤,=,≥,>}
(in)active(c) true when component c is (in)active

ci.p j � ck.p� true when port p� of component ck is

connected to port p j of component ci

true, false boolean litterals

Table 1. List of predicates for safety formulae.

All the predicates can be negated, with nat-

ural meaning. For instance, ¬(s < k) = s ≥ k,

¬(active(c)) = inactive(c), etc. These transforma-

tions are purely syntactic rewrite rules; there is no mean-

ing associated with comparison operators, and signals or

values are merely uninterpreted character strings.

The signals appearing in the predicates can be lo-

cated at the interface between the application and the

outside world, as well as internal signals. Safety for-

mulae are part of the ADLV descriptions, alongside the

description of processing components and connections.

3.2.2. Example

Let us consider the following property, that must al-

ways be satisfied: when the driver brakes, the regulator
is not connected until the driver presses the “on” button
and he/she releases the brakes.

The problem with this specification is that it uses a

future operator: until. However, it can easily be rewrit-

ten in the past tense: since the brakes were pushed, if
the driver has not both pressed the “on” button and re-
leased the brakes, then the regulator is not connected.

This gives the following ADLV statement (a << b
means “output port b is connected to input port a”):

always {
(!(regul_on && !brakes_on)) since brakes_on =>

!(throttle << regulator.regulated_cmd);
} /* Statement S1 */

A statement can use only propositional operators:

never {
set_target &&

(current_speed < 40 || current_speed > 140);
} /* Statement S2 */

The statements S1 and S2 will be used as exam-

ples in the remainder of this paper. never and always
statements being equivalent, we will only consider never
statements from this point on, without loss of generality.

3.3. Checking Safety Formulae

For each safety formula, we must generate an equiv-

alent observer for the controller. However the safety

formula can reference signals that are not directly con-

nected to the controller. By analyzing the structure of

the application and by looking into the internal blocks,

we can build an equivalent temporal formula that only

references controller events. This method is described

in section 4.

We are then able (see section 5) to translate this for-

mula (called an intermediate formula) into one or two

observers. Observers are modules written in the same

language as the controller (for instance, Esterel or Lus-

tre) which are processed by the language-specific check-
ing tools in order to prove that the safety properties are

satisfied by the controller. The steps towards the gener-

ation of the observer are summarized on figure 2.

The properties are checked on the synchronous im-

plementation of the controller, which is used to drive the

application at run time, thanks to observers directly gen-

erated from the application description itself. As stated

above, the WYPIWYE is effectively both for the con-

troller and for the internal components.
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Application

Description

(ADLV)

Safety

Formula

(ADLV)

Intermediate

formula(e)
Observer

Diagnosis

Figure 2. Overview of property verification.

4. Interpreting Temporal Formulae

4.1. Overview

For each formulae in a never statement, the general

idea is to compute a signal in the synchronous language,

which is emitted at each instant when the formula is sat-

isfied. A special signal failure is emitted when the top-

level formula of a never statement is satisfied. Model-

checking tools will either prove that failure can never be

emitted, or exhibit a counterexample.

The problem is stated as follows: Given f a tem-
poral logic formula involving application signals, build
a corresponding signal s, based uniquely on the con-
troller’s input and output events, using constructs of the
controller implementation language. We can decom-

pose this problem into two sub-problems:

1. transform predicates involving application signals

into predicates involving controller events only.

This section studies this sub-problem, which rep-

resents the major part of our work,

2. generate an observer in the target language, from a

temporal logic formula. This has been proved to be

relatively easy [15, 16]. More details regarding our

own framework are given in section 5.

The first issue boils down to translating predicates:

• event predicates must be transformed into con-

troller event predicates, what can be achieved by

following the connections,

• comparisons involving data flow values. The data

flows are generally inputs of internal components

that emit events when the comparison becomes true

or false. Such a predicate is therefore true between

the occurrences of a “start” and a “stop” event,

• activations and connections are either performed

at startup, or modified at runtime by internal com-

ponents. Once again, we can identify “start” and

“stop” events for the validity of the predicate.

To define truth values that are true between the oc-

currences of two events, we introduce interval predi-
cates, denoted by [u,v[. [u,v[ is true if u has occurred,

but v has not yet occurred. Note that the truth value of

an event predicate s is that of the interval predicate [s, s̄[.
This way, solving sub-problem #1 amounts to replacing

any predicate in the original formula with interval pred-

icates which involve controller events only. This yields

a new temporal logic formula which is called an inter-
mediate formula. Both types of formulae share the same

propositional and temporal operators; they differ by the

types of acceptable predicates: those of table 1 for orig-

inal formulae, intervals for intermediate formulae.

However, it is not always possible to find an inter-

mediate formula that is strictly equivalent to the origi-

nal formula. Nevertheless, it is sometimes possible to

approximate the original formula by two intermediate

formulae, one too strict, one too loose, as will be seen

in section 4.3. More precisely, when a formula cannot

be translated exactly into an interval, but can be “brack-

eted” by two intervals, the analysis algorithm creates a

proto-interval that consists of the pair of bracketing in-

tervals. As a result, the most general algorithm doesn’t

directly produce intermediate formulae built from inter-

vals, but rather formulae built from proto-intervals, that

are called proto-intermediate formulae.

In cases where it is possible to produce an interme-

diate formula equivalent to the original formula, proto-

intermediate formulae are simply equal to the interme-

diate formulae. Otherwise, proto-intermediate formu-

lae are the best approximations for the original formula.

More details are given in section 4.4, including an algo-

rithm to produce one or two intermediate formulae from

a proto-intermediate formula. In this case, we call these

approximate intermediate formulae, in contrast to oth-

erwise exact intermediate formulae. Table 2 gives the

definitions for the interval and proto-interval predicates.

Type Meaning

[si,s j[ true when event si has occurred, but event s j
has not occurred yet

(AI ,AO) approximation of the truth value of a for-

mula by a stricter interval (AI , inner) and a

looser interval (AO, outer)

Table 2. Predicates for internal use.

4.2. Building Proto-Intermediate Formulae

The algorithm for translating an original formula

into a proto-intermediate formula is based on the pif
(“proto-intermediate formula”) function. pif( f ) :
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1. if f is of type (in)active(c), look for the activa-

tion conditions of component c. These conditions

are events produced by the controller and processed

an internal component. Return an interval, whose

bounds are the controller events that activate and

deactivate component c.

2. if f is a connection predicate, proceed as above:

look for controller events that are processed by in-

ternal components to connect ports, and return an

interval whose bounds are the controller events that

cause the connection and disconnection.

3. if f is of type signal (s), s may either be one of the

controller ports (let p = s), or s may be connected

to such a port p. If p is found, return [p, p̄[.

4. then, look for f and ¬ f in the when clause of a pub-
lishes ... when ... statement2 of an internal compo-

nent. If the corresponding internal ports are con-

nected to the controller, let p f and p¬ f be the con-

troller’s ports. Then, return [p f , p¬ f [. If only an

approximate result is found, store it in the approx
variable, and proceed to the next step.

5. if f is of type a�b where � is a binary operator, let

a′ = pif(a) and b′ = pif(b). If a′ and b′ are de-

fined and are exact intermediate formulae for a and

b, return a′ � b′. Else, if approx is defined, return

approx. If approx is not defined, return a′ �b′.

6. if f is of type � a where � is a unary operator, let

a′ = pif(a). As above, return �a′ or approx.

7. if nothing has been returned so far, pif fails.

Remark 1
Proto-intermediate formulae only appear when

looking for f in when clauses (step 4). If this hap-

pens, we do not return the intermediate formula right

away, but rather try to privilege an exact formula possi-

bly found by decomposing f (steps 5 and 6). We return

an approximate solution only as a last resort.

Remark 2
In steps 5 and 6, formulae are decomposed accord-

ing to the tree structure resulting from the way they were

written by the user. We do not consider reorganizing the

formulae because: 1) it limits the complexity of the al-

gorithm, 2) it takes advantage of the common patterns in

safety formulae and when clauses which are written by

the same person3.

2Identification of formulae can be achieved by using a canonical

form, derived from a normal form.
3This is similar to what is done in Global Common Subexpression

Example
The predicates of statement S1 can be found directly

in when clauses, and translated into intervals:

• a look at the textual description of component

BrakesCheck shows that brakes on corresponds

to [brakes pushed,brakes released[,

• regul on is directly a controller input event, so it

corresponds to [regul on, regul on[,

• throttle << regulator.regulated cmd

corresponds to [start reg,stop reg[ (the dynamic

connection on the right of figure 1 is treated as an

internal component).

This yields IF1, an exact intermediate form:

¬{(¬([regul on, regul on[∧[brakes released,brakes pushed[))
S [brakes pushed,brakes released[}⇒ ¬[start reg,stop reg[)

4.3. General Case: Dealing With when Clauses

This section deals with the matching of an original

formula f in when clauses. The match may be exact as

in the example above, but this section gives details about

how approximate matches are found.

Let f be an original formula, and let us suppose that

there are a number of publishes... when... statements, of

the form publishes si when ai. The goal is to find an

interval I equivalent to f , i.e. to find a start signal, at

which f becomes true, and a stop signal, at which f
becomes false. To determine the start signal, we look

for signals si in when statements where ai = f , ai ⇒ f ,

or f ⇒ ai
4. The same applies to the stop signal, with f

being replaced with ¬ f . From now on, we only consider

the start signal; finding the stop signal is similar.

Each formula ai is associated to a signal si (which

is emitted when ai becomes true). Let’s call I+ and I−
the start and stop signals of f (I = [I+, I−[).

There is a partial order relation · ⇐ · on the set of

formulae, and an associated equivalence relation · = ·.
By structure morphism, these relations respectively in-

duce a partial order relation · � · and an equivalence

relation · ↔ · on the set of signals. a ⇐ b means that

a must be satisfied for b to be satisfied (b ⇒ a). This

means that the event sb associated to b cannot happen
before sa, the event associated to a. Therefore, sb must
happen after sa. The � relation is therefore a temporal

order on the occurrence of signals. sa � sb means that sa

Elimination (GCSE) in compiler theory [17, 18]: subexpressions are

identified, but the structure is not reorganized.
4Determining the implication relationships is straightforward using

the aforementioned canonical forms.
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is always emitted before sb. Likewise, ↔ corresponds

to the simultaneity of signals. As a consequence, it is

possible to build a Hasse diagram involving I+ and the

signals si that compare to I+ (see figure 3).

Among the signals that happen “before” I+, only

the maximum ones, the “closest to I+”, matter. On the

example, these are s1 and s4. These signals provide the

best possible approximation of I+, while preceding it.
Let S+

O be the set of these signals. Formally, it is de-

fined as: S+
O = {s ∈ S|s � I+ ∧¬(∃s′ ∈ S,s � s′ � I+)}.

Likewise, let S+
I be the set of minimum elements located

after I+, S−I the set of maximum elements located before

I−, and S−O the set of minimum elements located after I−.

S+
I , S+

O , S−I and S−O are depicted on figure 3.

I+
s1 �s2 �

s3

�

s4

�
s5

�
�

s6�
s7

�

s8

�
s9

�

S+
IS+

O

Figure 3. Hasse diagram, with sets S+
I & S+

O .

Let us define s+
O ∈ S+

O , s+
I ∈ S+

I , s−I ∈ S−I and s−O ∈
S−O . The relative positions of these signals are shown

on figure 4. This defines a “bracketing” of I by an outer

approximate [s+
O ,s−O [, and an inner approximate, [s+

I ,s−I [.

s+
O s−O

s+
I s−I I−I+

Figure 4. “Bracketing” of I.

This “bracketing” is valid whatever the signals s+
O ,

s+
I , s−I and s−O : {

s+
O � I+ � s+

I
s−I � I− � s−O

We wish to define the best possible approximation
for I+ and I−. Hence, within leftmost members, we

consider the last signal to occurr, and within rightmost

members, we consider the first signal to occur. This en-

ables us to define intervals AI (best inner approximation)

and AO (best outer approximation):

[first(S+
I ), last(S−I )[︸ ︷︷ ︸

AI

⊂ I ⊂ [last(S+
O),first(S−O)[︸ ︷︷ ︸

AO

This finishes the complete description of the step #4

in the algorithm of section 4.2:

• if there exist signals s+ and s− such that s+ ↔ I+

and s− ↔ I−, then return the interval [s+,s−[,

• else, try to define intervals AI and/or AO. Return

the pair (AI ,AO), which is called a proto-interval,

• else, go to step #5.

4.4. Proto-Intermediate Formulae

4.4.1. Definitions

A proto-interval is a pair (AI ,AO) of intervals that

constitutes a “bracketing” of the interval I correspond-

ing to a formula f . If AI = AO, it means that I = AI = AO
and this is an exact match (the set of intervals is trivially

embedded into the set of proto-intervals). From now on

we will assume that AI �= AO. A proto-intermediate for-
mula is a formula whose predicates are proto-intervals.

Example
In statement S2, the expression:

e=current speed < 40 || current speed > 140

cannot be found exactly. However, if we examine the

when clauses of component SpeedCheck, we see that:

1) I+
e ⇒ speed incorrect, and 2) speed correct ⇒ I−e .

The interval [speed incorrect,speed correct[ is thus

an outer interval for e. There is no inner interval for

e, so the proto-intermediate formula for S2 is PIF2 =
set target∧ ( /0, [speed incorrect,speed correct[).

Intermediate formulae can easily be translated into

observers (see section 5). A proto-interval, as a pair

of intervals, thus a pair of intermediate formulae, can

thus be translated into two observers: one too loose, one

too strict. However, a non-trivial proto-intermediate for-

mula cannot directly be used as such, and needs to be

rewritten into a pair of intermediate formulae.

4.4.2. Transforming Proto-Intermediate Formulae
into Pairs of Intermediate Formulae

A proto-intermediate formula f ′ is rewritten as

( f ′I , f ′O), where f ′I is an inner (“strict”) intermediate for-

mula, and f ′O is an outer (“loose”) intermediate formula.

We denote this by f ′ � ( f ′I , f ′O). Thus for a proto-

interval, we have the trivial rule: (AI ,AO) � (AI ,AO).

Methodology used for the proofs
Suppose that an original formula f has an proto-

intermediate formula f ′ which is rewritten as ( f ′I , f ′O).
Then the order relations on the start and stop events give

two equivalent formulae:{
f ′O ⇐ f ⇐ f ′I (start event)

¬ f ′I ⇐ ¬ f ⇐ ¬ f ′O (stop event)
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Conversely, let f be an original formula. If there

are intermediate formulae g and h such that g ⇐ f ⇐ h,

then g and h are respectively inner and outer intermedi-

ate formulae for f . In short, f ′ � (g,h).

Negation
Let f ′ be a proto-intermediate formula, associated

with an original formula f , with f ′ � ( f ′I , f ′O). Let g′ =
¬ f ′. The situation is depicted on figure 5.

Formally, one can write f ′I ⇐ f ⇐ f ′O. By taking

the contraposition: ¬ f ′O ⇐ ¬ f ⇐ ¬ f ′I . Hence the con-

clusion, that shows that the negation inverts the inner

and outer formulae:

if f ′ � ( f ′I , f ′O) then ¬ f ′ � (¬ f ′O,¬ f ′I )

f ¬ f f

f ′I ¬ f ′I f ′I
f ′O ¬ f ′O f ′O

Figure 5. Structure of the intermediate formu-
lae for proto-intermediate formula g′ = ¬ f ′.

Conjunction, disjunction and implication
Let f ′ and g′ be two proto-intermediate formulae,

respectively associated with original formulae f and g.

Let us suppose that f ′ � ( f ′I , f ′O) et g′ � (g′I ,g′O).
We have: f ′I ⇐ f ⇐ f ′O and g′I ⇐ g ⇐ g′O. The rela-

tion ⇐ is compatible with logical and5, thus we have:

f ′I ∧g′I ⇐ f ∧g ⇐ f ′O ∧g′O

Finally: f ′ ∧ g′ � ( f ′I ∧ g′I , f ′O ∧ g′O). Likewise, ⇐
is compatible with ∨, thus f ′ ∨g′ � ( f ′I ∨g′I , f ′O ∨g′O).

Implication is dealt with by rewriting f ′ → g′ as

¬ f ′ ∨g′. By applying rules seen above:

f ′ → g′ � ( f ′O → g′I , f ′I → g′O)

Temporal operators
We still are under the assumption that f ′I ⇐ f ⇐ f ′O

and g′I ⇐ g ⇐ g′O. Let Ψ be a unary temporal operator.

Manna et al [19] state that temporal operators are mono-

tonic, hence the relation: Ψ( f ′I ) ⇐ Ψ( f ) ⇐ Ψ( f ′O). We

thus conclude: Ψ( f ′) � (Ψ( f ′I ),Ψ( f ′O)).
The same applies to binary temporal operators. If

Ψ is a binary temporal operator, we have likewise:

Ψ( f ′,g′) � (Ψ( f ′I ,g′I),Ψ( f ′O,g′O)).

5The formula [(a → b)∧ (c → d)] → [(a∧ c) → (b∧d)] is a tau-

tology, what can easily be verified.

Conclusion
All operators permit a “natural” transformation of

proto-intermediate formulae into pairs of intermediate

formulae. In the end, either one exact or possibly two

(one inner and/or one outer) approximate intermediate

formulae are generated.

Example
The proto-intermediate formula PIF2 is naturally

rewritten as an outer intermediate formula:

IF2 = set target∧ [speed incorrect,speed correct[

5. From Intermediate Formulae
to Observers

5.1. Observers and Use Thereof

As stated above, an intermediate formula is a logic

formula that must never be true. We have to translate it

into an observer in the target language, which emits an

error signal in the states where the formula is true. One

can then use a verification tool either to prove that the

error signal is never emitted (and hence that the safety

property holds), or conversely, to exhibit a counterex-
ample. The verification tool is generally provided with

the target development environment; examples include

checkblif for Esterel and lesar for Lustre.

When the analysis of safety formulae produces ex-
act observers, the results of the checking tools directly

correspond to the satisfaction or non-satisfaction of the

formulae. However, when the analysis produces approx-
imate observers, the results are subject to interpretation,

and the analysis tool must state it clearly.

Indeed, an observer based on an inner intermediate

formula can miss some failure cases because it is too
loose. However, if the checking tool finds a counterex-

ample, it corresponds really to a case of non-satisfaction

of the safety formulae. The checking toolchain thus per-

forms an under-verification of the system.

Conversely, an observer based on an outer inter-

mediate formula doesn’t omit any failure case, but it

is prone to detecting false counterexamples, because it

is too strict. The checking toolchain thus performs an

over-verification of the system.

Example
An observer based on IF2 is too strict for statement

S2. This statement ensures that the event set target
never occurs when the speed is below 40 or above

140 km/h. However, an observer based on IF2 will en-

sure that set target never occurs when the speed is
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below 40 or above 130 km/h. Thus it may detect “coun-

terexamples” for speeds in the interval 130-140 km/h

that are not contradictory with the safety property S2.

5.2. Esterel Observers

Esterel is a synchronous reactive language with a

significant user base in the industry, especially for de-

signing safety-critical systems.

It is quite straightforward to associate an Esterel

module to every sub-formula f of an intermediate for-

mula. This module emits a signal S f whenever f is

true. A simple interval I = [s1,s2[ can be translated into

a module which maintains an output signal SI between
the occurrences of s1 and s2:

every immediate s1 do
abort sustain S_I when s2

end every

For a propositional operator, say e = a∧b, we first

generate the modules corresponding to a and b, respec-

tively C_a (output signal Sa) and C_b (output signal Sb).

Then the module for the and operator is:

run C_a || run C_b || [
every immediate [S_a and S_b] do
emit S_e

end every
]

Modules for temporal operators are implemented

in the same way. Examples can be found in other pa-

pers [16]. For instance, e = a S b is translated as:

run C_a || run C_b || [
every immediate S_b do

do sustain S_e watching immediate [not S_a]
end every

]

There is also a top-level module, responsible for

collecting the signals associated with every individual

intermediate formula, and generating the failure signal

when necessary.

The program containing the observers needs to be

compiled alongside the controller code, and then Es-

terel’s standard checkblif tool can perform verification.

5.3. Lustre Observers

Regarding its expressive power and use, Lustre is

close to Esterel. However, while Esterel is based on

modules programmed in an imperative way, Lustre is

based on nodes programmed in a functional way and

through which data flows. A very practical option is to

build a library of nodes, corresponding to each of the

propositional and temporal operators [20]. For instance,

the following nodes calculates b S a:

node since(B, A: bool) returns (B_snc_A: bool);
let

A_occurd = if A then true
else false -> pre(A_occurred);

B_snc_A = if A_occurred then B
else false; -- true in weak since

tel

It is thus possible to build Lustre expressions that

correspond directly to intermediate formulae. For in-

stance, the intermediate formula IF1 is translated into:

never_3 = not(
implies(since(not(

interval(regul_on, not(regul_on))
and
interval(brakes_released, brakes_pushed)

), interval(brakes_pushed, brakes_released)),
not(interval(start_reg, stop_reg))));

A top-level node emits an output signal ok to indi-

cate whether or not all formulae are satisfied. This is

used by the standard Lustre verifier called lesar.

6. Conclusions and Perspectives

This paper has introduced both a formalism for de-

scribing systems made of heterogeneous parts, as well

as an analysis method that allows the designer to express

properties on the systems in a natural way, using tempo-

ral logic to specify relations among internal or external

signals. Our “black box” approach as regards the inter-

nal specification of the components allows the designer

to use any formalism of his/her liking.

The properties can then be automatically translated

into temporal logic properties on the controller events.

From this, observers can be generated in the language

used for specifying the controller, and used to prove the

properties by model-checking. In cases in which spec-

ified properties do not exactly match controller events,

approximate observers can be generated. Although their

results are subject to interpretation, they can help system

designers detect certain defects and validate part of the

behavior of a system.

We have an implementation of the analysis tool in

Java which reads the textual ADLV description of an ap-

plication, analyses the safety formulae, and builds proto-

intermediate formulae and intermediate formulae. It can

then produce observers in various languages thanks to

a modular structure which requires the definition of just

one class for each supported language. This class im-

plements a visitor pattern [21] that traverses intermedi-

ate formulae and generates programs in the target lan-

guage. We provide visitors for Esterel and Lustre, but

support for other languages can be added very easily.

The tool is available at http://wwwdi.supelec.
fr/logiciels/adlv/.

2008 IEEE International Conference on Software Testing Verification and Validation Workshop (ICSTW'08)
978-0-7695-3388-9/08 $25.00 © 2008 IEEE



Perspectives include handling a wider range of sys-

tem descriptions. For instance, the current method can-

not deal with applications in which connections between

the components and the controller change at run-time.

This extension makes the analysis more complex since

the mapping between formulae and controller signals

becomes dynamical.
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