
An Architecture for Ambient Computing

Christophe Jacquet1,2 Yolaine Bourda1 Yacine Bellik2

Christophe.Jacquet@supelec.fr Yolaine.Bourda@supelec.fr Yacine.Bellik@limsi.fr

1Suṕelec 2LIMSI-CNRS
Plateau de Moulon BP 133

F-91192 Gif-sur-Yvette Cedex F-91403 Orsay Cedex

Abstract

First and foremost, this article presents a conceptual model for ambient computing systems,
where we define the vocabulary in use. We then present an architecture that closely matches this
model, and that makes use of the popular concept of context component. However, we extend this
concept by adding a strong typing of its inputs and outputs, so as to allow easy consistency checks.
Moreover, our architecture introduces a high-level mechanism to abstract context and allow the rapid
construction of ambient computing applications. At the end of the article, we propose a possible
practical implementation of this architecture.

1 Introduction
The goal of ambient computing systems is to interact with users in everyday life, even in situations

non typical of human-computer interaction. To this end, these systems must be capable of (1) capturing
theircontextof use, and (2)performing actionson their environment.

In this article, we mainly focus on the design of an architecture tocapturecontext. With “context”, we
mean what Anind K. Dey describes in his thesis [4]:“any information that can be used to characterize
the situation of an entity”, where an entity is either a person, a place, or an object.

Thus, entities may be located in the physical world. However, an ambient computing system adds
computer objects on top of the physical world. In consequence, user interactions happen inmixed reality.
For instance, some people have proposedaugmented realitysystems, where interactions happen mainly
in the physical world whose physical objects are augmented by virtual properties. Some other people
have proposedaugmented virtualitysystems, where interactions happen in a computer-generated world
that is augmented by elements taken from the physical world [5].

Context is always a significant parameter, even invirtual reality systems that are totally independent
of the physical world. In this case, context would be totally inferred from computer representations, with
absolutely no link with the physical world.

In fact, Milgram has shown that it is very difficult to precisely define the concepts ofreality, aug-
mented reality, augmented virtualityandvirtual reality. Instead, he introduces a continuum that ranges
from pure reality (the physical world) to pure virtuality (virtual worlds): thereality-virtuality continuum
(fig. 1).

Real
Environment

Virtual
Environment

Mixed Reality

Augmented
Reality

Augmented
Virtuality

Figure 1: The reality-virtuality continuum ranges from pure reality to pure virtuality.

Frameworks designed to capture context have already been proposed. For instance, Anind K. Dey [4,
3] has released theContext Toolkitwhose goal is to ease the design and implementation of context-



aware systems. Another example is Gaetan Rey’scontextorabstraction [6]. The contextor is a software
component that can aggregate context. We base our work on these previous research achievements.
However, our proposal for an ambient-computing platform introduces two original aspects: a strong
typing of all communications between software components, and the notion ofobject hive, a software
abstraction to ease access to high-level context.

In section 1, we start by defining the underlying vocabulary and our conceptual model for ambient-
computing systems. Section 2 details our platform proposal and its original aspects. Section 3 is an
overview of a possible implementation for this platform.

2 Conceptual Model
An instance of our conceptual model is presented on figure 2. Abstract representations of objects live

in themodel. They haveincarnationslocated in theworld that can be either physical or virtual.

World Model

Physical world

Virtual world

printer-d2.18

 name

 num-printed-pages

 num-remaining-pages

 color-capable = false

office-210

 name

 temperature

physical incarnation

virtual incarnation

Figure 2: Relationships between objects of the world and objects of the model.

2.1 World
We callworld the set of all the objects belonging to the reality-virtuality continuum. So the world

holds all the objects in interaction with the user, both physical and virtual.
It is nevertheless possible to distinguish between thephysical worldin the one hand, and thevirtual

world on the other hand (fig. 2).
The termphysical worldrefers to all the objects that are governed by physical laws. It is the world

human beings live in. Conversely, the termvirtual world refers to environments composed of imaginary
computer-generated objects that the user can interact with through virtual and mixed reality applications.

When thinking of virtual objects, one often imagines only images displayed in head-mounted dis-
plays, caves and so on. However, virtual worlds can possibly heavily rely on other senses, such as audio
and tactile sensations.

In the interior of the reality-virtuality continuum (i.e. in mixed reality), the physical and virtual
worlds blend together.

Example 1 —A secretary typesets a letter with a popular word processor. The physical parts of
the computer (keyboard, screen, mouse, etc.) are located in the physical world, as well as the secretary
herself. Conversely, the letter and the word processor program (as well as the “companion”, a small
character appearing on the screen and supposed to help the user with her tasks) are located in the virtual
world.

However, all these objects belong to the world as a whole. All of them can be sensitively perceived
by people.



2.2 Model and Model Objects
We callmodelthe abstract representation of the world (physical world as well as virtual world). The

objects of the world are described in the model by a set of characteristics calledattributes.
Each object from the model describes (at least) one object of the world (fig. 2). Since it is impossible

to describe every single detail of the world, the model should then be considered apartial representation.
Indeed, it is likely that implementors would decide to model only the characteristics of the world relevant
to the target applications.

It is not possible to automatically check that the model really represents the world it is supposed
to describe. This is the ambient environment designer’s task to check this kind of consistency. No
mechanism can automatically detect possible errors.

Example 2 —In the physical world, a printer is located in room D2.18. It is represented in the
model by the objectprinter-d2.18. This object has got an attribute calledprinted-pages that
represents the total count of printed pages on the real-world printer located in room D2.18. The ambient
environment designer must ensure that this attribute is updated according to its semantics. For instance, if
one assignedanotherprinter’s page counter to it, no formal consistency rule would be broken. Thus, only
the environment designer can perform consistency checks because they are not feasible automatically.

There are three types of attributes :

• static attributes: values are affected to such attributes once and for all for a given object, and they
do not change in its lifetime,

• state variables: they represent the dynamic state of the world. They are permanently updated,

• calculated attributes: they are dynamically deduced from the values of other attributes. Their
value is updated each time one of the attributes they depend on changes.

Example 3 —The attributecolor-capable of printer printer-d2.18 is set tofalse for its
whole lifetime. Likewise, itsname attribute is set to"Printer located in room D2.18". A
context component regularly queries the printer through1 requests so as to know the number
of printed pages since the last change of its toner cartridge, and updates theprinted-pages at-
tribute. Theremaining-pages attribute is defined to be equal totoner-cartridge-capacity −
printed-pages. Therefore, it will be updated each time theprinted-pages attribute is modified.

2.3 Incarnations
We callincarnationan object in the physical world or in the virtual world corresponding to an object

from the model. In the first case, we call it aphysical incarnation. In the second case, we call it avirtual
incarnation(fig. 2).

Example 4 —An incarnation of theprinter-d2.18 object (located in the model) is the (physical)
printer located in room D2.18. It is an object from the physical world.

Up to now, we have silently assumed that an object from the model had one and only one incarnation
(either physical or virtual). Actually, it is possible for a model object to haveseveralincarnations:

1. in pure reality, when not interacting with computers, every object has exactly one incarnation,
located in the physical world,

2. in mixed reality, or simply when interacting with computer tools, some objects of the model can
have several incarnations, either physical or virtual,

3. inpure virtuality, the objects of the model have one or several virtual incarnations, and no physical
incarnation.

1Simple Network Management Protocol.



3 Proposal: a Platform for Ambient Computing
3.1 Introduction

The previous section has shown that objects of the world (either physical world or virtual world)
can be described in a model by objects whose they are incarnations. Now, we show how this vision can
lead to the design of a platform architecture for ambient-computing systems. The general layout of this
platform is show on figure 3.

Sensors

office210

 temperature

 numberOfPeople
printer-d2.18

 printed-pages

 remaining-pages

Context
aggregation
(fusion)

Change > 1KEvery change
Assignation

Object hive

Aggregation
components

Figure 3: General layout of our ambient-computing platform: context capture subsystem.

The platform is divided in four layers:

Sensors.Sensors are the interface between the world (either physical or virtual) and the platform. They
permanently track changes in the world in order to update the model accordingly.

Context aggregation. It is often necessary to combine information from several sensors, so as to deduce
relevant and useful context information. That is what we call context aggregation.

Assignation. Information from the preceding layers characterize objects of the model. That is why we
assignsuch information to the attributes of the objects of the model.

Object hive. Model objects are gathered in the platform in what we call anobject hive.

On figure 3,sensorsandaggregation componentsare designated by the generic termambient com-
ponent. They share many characteristics with Anind K. Dey’s context widgets [4, 3] and Gaetan Rey’s
contextors. The task of these components is to capture information in the world and perform transforma-
tions on contextual information.

3.2 Ambient Components
3.2.1 Introduction

An ambient component is a software component that behaves in a relatively autonomous fashion and has
got inputs and outputs (fig. 4).

For instance, sensors are particular ambient components that have no input and only outputs. They
are representatives in the model for sensors installed in the physical world or information sources located
in a virtual world.

More generally, ambient components’ outputs are activated or altered in the following two cases:



Ambient
Component

Input Output

Figure 4: Ambient components.

• when an input changes. In response to this change, the ambient component performs an action,
so as to update its internal state as well as its output values. In consequence, the values of some
outputs may be modified,

• when an internaleventhappens inside the component, for instance a timeout, or, in the case of a
sensor, a change in the world.

Example 5 —The output of alow-pass filtercomponent will change every time its input will change.
Conversely, we can imagine aclockcomponent that will output an event every second. In this case, the
component has no input. The cause of output events is totally internal to the component. Likewise, the
output of athermometercomponent embedding a “real” temperature sensor will change depending on the
current room temperature. From the platform’s point of view, this cause isinternal to the thermometer
componentsince it has no input.

Ambient components can be interconnected (inside the aggregation layer or the context capture layer,
see fig. 3): the output of one component (calledproducercomponent) is then connected on the input of
another component (calledconsumercomponent). One given output can be connected to an arbitrary
number of distinct inputs. However, one given input can be connected to at mostoneoutput of another
context component.

Indeed, when producing information, it is straightforward to distribute it to an arbitrary number of
consumers. Conversely, it is very difficult to fuse information from several producers to deduce one
unique input. It requires (possibly complex) processing that isspecificto the information involved. That
is why an input can be connected to one producer only. However, it is possible that this producer is in
fact a fusion component, able to fuse information from several upstream components, each one being
connected to one of its own inputs (fig. 5).

Component

Component
performing
Fusion by
Complementarity

a b c

Component

a b c

Impossible Correct solution

Figure 5: Since one input can be connected to only one output, we must resort to fusion components.

So as to ensure consistency of data processed by the systems, inputs and outputs are typed. Thus,
to be able to connect two ambient components, the type of the upstream component’s output must be
compatible with the type of the downstream component’s input. This rule allows the detection of trivial
error cases, but does not allow for the detection of more subtle and trickier errors.

Example 6 —On an input supposed to be fed with the acceleration due to gravity (g, measured
in m · s−2 [meters per second per second]), it isnot possible to connect the output of a temperature
sensor (measured in K [kelvins]). However, itis possible to connect by mistake the output of a vehicle’s
acceleration sensor to it, because this quantity is an acceleration too, measured in m· s−2).



In this example, we have informally shown a first category of typing: typing measured quantities with
units from the international system of units (). Actually, we propose two categories of inputs/outputs:
valueinputs/outputs, andeventinputs/outputs.

3.2.2 Value inputs/outputs

Valueinputs/outputs can carry two kinds of values:

• abstract values(for instance, user identifiers). In this case, we will resort to classical computer
types: integers, floats, character strings, structures, etc.,

• physical quantities(for instance, a temperature, or an acceleration). In this case, we will give a
unit (from the international system of units) to inputs and outputs (for example, m·s−1 [meters per
second], K [kelvins], etc.)

A value output always has a value. A typical example of context component having a value output
is a physical sensor, for instance a temperature sensor. This sensor permanently measures the current
temperature, so the value of its output calledtemperature can be read at any moment. A consumer
component connected to this output will have several means of retrieving information:

• probing the current output value at a given moment, for instance on initialization,

• subscribing to the producer, and being notified when the quantity fulfills a given condition. For
instance: “the absolute temperature change since the last notification is higher than 1 K”, “the
temperature has just risen above 273 K”, etc.,

• subscribing to the producer and being notified at a givensamplingfrequency. For instance, a given
component can ask to be notified two or three times per second.

3.2.3 Event inputs/outputs

Eventinputs/outputs have different semantics. They have no associated value, so one cannot query them
at any moment. Conversely, they punctually send messages to the consumers connected downstream.
These messages are calledevents. So, the only means for a consumer to connect to an event output is
to subscribeto this output. This way, the consumer component tells the producer it is interested in the
events it produces and wishes to receive them until further notice.

Each event type has got a name that is unique throughout the system. For instance, a crossing detector
(such as alight gate) sends an event calledcrossing-detected each time someone passes by.

Event types can be classified in a hierarchy, where all events are descendants of a common ancestor,
calledgeneric-event for instance. This way, an input of one component can be connected to an event
output of typeT1 of another component if and only if:

• it is an event input (then, letT2 be its event type),

• T1 is a subtype ofT2, ie. an event of typeT1 can be cast to an event of typeT2.

Example 7 —The event typecrossing-detected described above can have two sub-
types, fast-crossing-detected and slow-crossing-detected (fig. 6). A component that
takes in input crossing-detected events will also acceptfast-crossing-detected and
slow-crossing-detected events.

Example 8 —We can imagine a generic event counter, that would be able to count all occurrences of
every possible type of events. To this end, we only need to create a component that has an output of type
generic-event. Then, it will be possible to connect it to every kind of event output.



generic-event

crossing-detected

fast-crossing-

detected

slow-crossing-

detected

door-opening

Figure 6: Event type hierarchy.

Some kinds of events are meant to carry information. In consequence, events can haveparameters,
i.e. attributes. An attribute has got a name and a type, among value types listed in section 3.2.2: “classi-
cal” computer types (character strings, integers, floating point numbers, etc.) or physical quantities with
units (for instance, an acceleration in m· s−1).

Example 9 —We can define the event typemeasured-crossing that has an attribute called
crossing-time, that is a physical quantity measured in seconds.

3.3 Context Aggregation
3.3.1 Introduction

The role of aggregation components is to transform raw data acquired by sensors into relevant high-
level information about the context of use of the system. As described in [6], this transformation can be
performed in several steps. Several layers of aggregation components can transform information step by
step.

It is interesting to draw a taxonomy of the different kinds of aggregation components. In this section,
we consider ambient components from the point of view of only one of their outputs, which amounts
to dealing with ambient components with only one output. This assumption is made without loss of
generality, because a component withn outputs can be replaced withn different components with one
output each and all the same inputs as the original component (fig. 7).

Component C

S1

S2

S3

E1

E2

Component C1

Component C3

Component C2

E1 E2
S1

S2

S3

Figure 7: Equivalence between one component withn outputs andn components with one output each.

First, we distinguish between components with one input and components with several inputs. In the
former case, we say that they areconversioncomponents; in the latter case, we say that they arefusion
components.



3.3.2 Conversion Components

A conversion component has got only one input. From values or events in input, it provides other values
or events on its output. That is why we say that it performs aconversion.

Example 10 —Imagine a component that applies a low-pass filter on its input. It gets values as input,
i.e. a signalf (t), and provides other values in output. More precisely, its output is a signal equal to
1
T

∫ t

t−T
f (u)du. The input and the output are of the same nature: they are value inputs/outputs.

Example 11 —Similarly, we can imagine a component that performs a conversion from one
event type to another. For instance, one may want to convert fromcrossing-detected events to
person-enters events if a light barrier is located at the entrance door of a room and therefore detects
people coming in.

Example 12 —Imagine a component that detects maxima on its input. It receives values in input but
provides events in output: each times it detects a maximum, it sends amaximum-detected event. This
component’s input and output have different natures.

Example 13 —Imagine a component that counts incoming events. Thus, its input is an event input,
of typegeneric-event. Each time an event arrives, the component increments a counter, whosevalue
is provided in output. Thus, the component’s output is a value output. Here too, the component’s input
and output have different values.

As we see on the example, all combinations of input and output natures are possible. The role of
conversion components ispreciselyto perform conversions between all the information types handled by
the system.

3.3.3 Fusion Components

A fusion component combines several information sources in input, and merges them to produce a unique
output. There are two cases, (a) when inputs provide different kinds of information, and (b) when inputs
are meant to provide similar information.

(a) — When its inputs provide different kinds of information, an ambient component deduces dif-
ferent new information. In this case, it is called acomplementaritycomponent, because it combines its
inputs in a complementary way to produce its output. The component performs processing very specific
both to its inputs and to the expected result. It is therefore very unlikely to be able to design a generic
algorithm capable of fusion arbitrary data in any complementarity component.

Example 14 —Suppose that a system is designed to write the transcripts of meetings. A speech
recognition subsystem can provide the raw text of discussions going on, and a video identification sub-
system can identify the current speaker. Aspecially designedcomplementarity component can take in
input information from these two subsystems, and provide the complete transcripts of meetings, attribut-
ing every statement to the right person.

(b) — When the inputs of one component are meant to provide similar information, we call it an
equivalencecomponent. For instance, a component can take in input information from three different
temperature probes. Several kinds of actions can be performed:

• redundancy: in this case, only the inputs that effectively provide values are taken into account,
and a “poll” is taken among them. For instance, in the case of three temperature sensors, one
can take themedianvalue among the three values available. Then, if two sensors out of three
provide correct information, the redundancy component provides a correct result, even if the third
component provides no or incorrect information. This method is known in the field of system
safety as2. In this case, it is possible to imaginegenericredundancy components, that work

2Triple Modular Redundancy



on arbitrary data and implement generic redundancy techniques.

• quality enhancement: redundancy components only compensate for upstream components’ fail-
ures. One can imagine more complex processing, that wouldimprove the qualityof incoming
similar information. For instance, by combining information provided by three noisy temperature
sensors, it must be possible to reduce the noise in output.

3.3.4 Summary of Aggregation Operations

In this section, we have seen some classes of context aggregation components. They are summarized on
figure 8. Our classification is somewhat similar to the taxonomy presented in [6], but our structure is
hierarchical and not linear.

aggregation

fusion

equivalence complementarity

conversion

redundancy quality
enhancement

Figure 8: Classes of context aggregation components.

Among these classes, only fusion can possibly be designed to be generic. As for other aggregation
techniques, algorithms are very specific:

• to the inputs and outputs of aggregation components,

• and especially, to theaggregation techniquethat one given component implements.

The vocabulary used in this section (equivalence, redundancy, complementarity) is inspired by the
research work carried out by Coutaz et al. on the properties of interaction [2]. Coutaz et al. also
introduce the notion ofassignation. We have assignation too, as shown in the following section: in short,
assignation allows us to associate the output of context components to the attributes of model objects.

3.4 Object Hive and Assignation
In section 3.1, we have seen that model objects are stored in an objecthive. The hive is itself an

ambient component, that holds a description of every object of interest. Ambient computing applications
can subscribe to the hive so as to be notified about changes in thehigh level context. Thus, they receive
notifications when model objects’ attributes are modified.

Example 15 —an application can subscribe to thepeople-count attribute of the objectoffice-210
(fig. 3) so as to be kept informed when people enter or leave this office. This is a request on high-level
contextual information.

It seems that theuseof information held in the hive is not problem in itself. However, maintaining
the hive in sync with the world is a more complex problem.

Therefore, an update process needs to be performed permanently. This can be done quite simply, in
connectingthe attributes of hive objects to the outputs of aggregation components. This connection is
calledassignation: when the ambient computing system designer decides that an attribute is meant to
receive information from a given component’s output, he or she somehowassignsthese informationto
the attribute.



This way, the attributes of hive objects have the same behavior asconsumers(see section 3.2.1) with
respect to the outputs of ambient components they are connected to. In consequence, an attribute can
only be assigned avalueoutput, because an attribute has got a value at any moment. It would have no
meaning to connect it to aneventoutput because an event happens only at one point in time.

However, we have seen before that attributes have types, exactly in the same way as value outputs
have types. As a result, assignation operations must enforce type compatibility, as when connecting one
ambient component to one other. An attribute can only be connected to avalue output of the same type.

As seen in section 3.2.2, a consumer connected to a value output must subscribe to this output so as
to be kept informed when the value changes and meets a given condition. Thus, attributes too must give
a condition when subscribing to information providers. These conditions are given when creating the
assignation, and are called theassignation conditions. For instance, it is possible to subscribe to every
change, or only of changes of a minimum amplitude (see theassignationlayer on figure 3).

Example 16 —The output of the redundancy component described in section 3.3.3 (b), and that com-
bines the outputs of three temperature probes by performing can be assigned to thetemperature
attribute of theoffice-210 object located in the hive.

4 Technological Solutions
4.1 Introduction

In this section, we present implementation choices for the conceptual architecture introduced in
section 3. The main goals of this implementation are the following:

• the system is distributed across a network; the network is transparent for designers of ambient
computing components and applications,

• the system is based on simple and open protocols.

From the description of the model, we deduce that an ambient computing system complying with our
architecture is composed of severalambient components. Therefore, our proposal is to distribute these
ambient components across the computers of a network. Each computer hosts a server, whose task is to
enable communication between its own components and other components, either local ones or remote
ones.

To support communication between components, it seems reasonable to exchange fragments of3

graphs. Indeed, is the new standard for the description of semantic information. In addition, vocabu-
lary description functionalities can be added to thanks to related languages such as4. This way,
it should be possible to describe vocabularies shared by components in a standard manner. For instance,
the data type hierarchy could be modeled using.
 is a conceptual model, and it has got several representation formats. However, the representation

format called/5 seems to be the easiest to use and the most popular, so we have chosen to use
it. It is then possible to consider that the servers of an ambient computing system areweb servicesthat
communicate using6. We have resorted to lightweight web services implemented using the-
7 protocol, known to be very simple. However, it would be possible to use more complete (yet more
complex) web services standards such as8.

4.2 Components and Component Identification
As we have shown before, servers are meant to host components and enable communication between

them. In particular, the object hive can be considered as one of these components. Therefore, it is hosted
3Resource Description Framework.
4Web Ontology Language.
5 over eXtensible Markup Language.
6HyperText Transfer Protocol.
7-Remote Procedure Call.
8Simple Object Access Protocol.



on one of the servers of the system, exactly in the same way as any other component is hosted on one
server.

Besides, it is useful to have list of all available components at one’s disposal, in particular at design
time. That is why every server has a particular component calledregistry, capable of providing the
list of all components available locally on this server. Registries could even talk with each other so as to
build the list of all components available onthe whole network, and not only locally [1].

Thus, the general architecture of our implementation looks like the example of figure 9. Every server
(represented by a 3D rectangle) has got a9 that is made of the physical () address of the server and
its port number. Within a given server, every component has got a unique name. There are some special
components, such as theregistry component, available on every server, and thehive component,
located onone of the servers.

http://192.168.0.1:1234

http://192.168.2.54:2345
thermometer-01

thermometer-02

registry

counter-45

hive

registry

network

Figure 9: Example of deployment of an ambient computing system.

This way, it is possible to define a for each component of a system, simply by concatening the
server and the local name of the component, separated by a slash.

Example 17 —The thermometer-02 component, located on the server identified by the
http://192.168.0.1:1234, is itself identified by the following: http://192.168.0.1:1234-
/thermometer-02.

As a result, it is easy to name any component by its, which is very important when using
because all objects (calledresourcesin the dedicated vocabulary)mustbe identified bys. In our
system indeed,s areboth logical identifiers (with respect to) and physicalidentifiers, enabling
access to platform components through the layers of a network.

5 Conclusions and Perspectives
In this article, we have first presented the vocabulary for a conceptual model of ambient computing

systems. We have then proposed an architecture model for ambient systems that fits this conceptual
model. This architecture model resorts to aggregation components that have already been presented by
others.

However, our model introduces a strong typing of the messages exchanged between ambient compo-
nents. Besides, the notion ofhiveconstitutes a high-level yet easy-to-use abstraction to access context
information.

Some context platforms such as the Context Toolkit [4] deal with the storage of context history and
synchronization of context components. We have not yet introduced such facilities in our architecture for
the moment because they are not our main topic of interest, but we may add some of them in the future.

Our short term research directions are the finalization of the test implementation, improvements to
the type system, and the possibility to provide detailed semantic information about context components.

9Uniform Resource Identifier



References
[1] C. Bettstetter and C. Renner. A comparison of service discovery protocols and implementation of the

service location protocol. InProc. EUNICE Open European Summer School, Twente, Netherlands,
Sept. 2000.

[2] J. Coutaz, L. Nigay, D. Salber, A. Blandford, J. May, and R. M. Young. Four easy pieces for assessing
the usability of multimodal interaction: the CARE properties. InProceedings of INTERACT’95:
Fifth IFIP Conference on Human-Computer Interaction, pages 115–120, 1995.

[3] A. K. Dey. Understanding and using context.Personal Ubiquitous Computing, 5(1):4–7, 2001.

[4] A. K. Dey and G. D. Abowd.Providing architectural support for building context-aware applica-
tions. PhD thesis, Georgia Institute of Technology, 2000.

[5] L. Nigay, E. Dubois, and J. Troccaz. Compatibility and continuity in augmented reality systems. In
I3 Spring Days Workshop, Continuity in Future Computing Systems, Porto, Portugal, Apr. 2001.

[6] G. Rey and J. Coutaz. Foundations for a theory of contextors. InComputer-Aided Design of User
Interfaces III, pages 13–32. Kluwer Academic Publishing, 2002.


