
Heterogeneous Modeling of
Gesture-Based 3D Applications

Romuald Deshayes
∗

Christophe Jacquet
†

Cécile Hardebolle
†

Frédéric Boulanger
†

Tom Mens
∗

∗
University of Mons
Mons, Belgium

firstname.name@umons.ac.be

†
Supelec E3S – Computer Science Dept.

Gif-sur-Yvette, France
firstname.name@supelec.fr

ABSTRACT
Model-driven software engineering (MDE) is a well-known
approach for developing software. It reduces complexity,
facilitates maintenance and allows for the simulation, ver-
ification, validation and execution of software models. In
this article, we show how MDE and model execution can
be leveraged in the context of human-computer interaction
(HCI). We claim that in this application domain it is benefi-
cial to use heterogeneous models, combining different models
of computation for different components of the system. We
report on a case study that we have carried out to develop an
executable model of a gesture-based application for manipu-
lating 3D objects, using the Kinect sensor as input device,
and the OGRE graphical engine as output device for real-
time rendering. The interaction part of this application is
fully specified as an executable heterogeneous model with
the ModHel’X modeling environment. We exploit the seman-
tic adaptation between different models of computation to
implement a layered application using the most appropriate
models of computation for each layer.

Categories and Subject Descriptors
H.5.2 [Information Systems]: Information Interfaces and
Presentation—User Interfaces; I.4.9 [Computing Method-
ologies]: Image processing and computer vision—Applica-
tions; I.6 [Computing Methodologies]: Simulation and
Modeling

General Terms
Design, Languages, Experimentation, Human Factors

Keywords
model-driven software engineering, heterogeneous modeling,
human-computer interaction, gestural interfaces, ModHel’X

1. INTRODUCTION
Developing human-computer interaction (HCI) applica-

tions and 3D applications can be a challenging task for
programmers for various reasons. It requires a lot of domain-
specific knowledge, and it involves a high level of technical
complexity, introduced by the many technical and hardware-
related programming issues. This accidental complexity [5]
can be reduced by resorting to off-the-shelf frameworks and

libraries for natural interaction (e.g., OpenNI1 and NITE2),
computer vision (e.g., OpenCV3) and real-time rendering
(e.g., OpenGL4, OGRE5 and JMonkey Engine6), and by
wrapping them through simple-to-use APIs so that the HCI
application developer is insulated from the technical details.

The accidental complexity can be reduced even further
by resorting to executable models that specify the behavior
of interactive 3D applications. The use of models promises
several benefits: the task of the developer will be facilitated
by raising the level of abstraction; and the models can be
simulated and verified in order to detect conceptual problems
in the application earlier in the life-cycle.

We advocate the use of heterogeneous models to allow
the HCI developer to use the most appropriate models at
the most appropriate level of abstraction, and to seamlessly
integrate these different models into an executable whole. By
heterogeneous modeling we mean that different models of
computation are used for the different components that make
up the application. For example, one component could be
modeled using discrete events, another one using synchronous
data flow, yet another one using timed finite state machines,
and all of these components need to interact and communi-
cate together in a seamless way. The ModHel’X modeling
environment permits this, by using hierarchical heterogeneity
and explicit semantic adaptation between heterogenous parts
of a model [3].

As a case study to illustrate how modeling provides an
added value in the context of HCI application development,
we report on the development of an executable model of a
gesture-based 3D application using the ModHel’X environ-
ment for heterogeneous modeling [8]. The heterogeneous
model of our HCI application offers several benefits to the
application developer: (i) the application-specific behavior
can be specified visually and changed easily at a very high
level of abstraction, without the need for writing program
code; (ii) the gestural input received from the user’s body
parts can be interpreted and manipulated independent of,
and without being aware of, the technical specificities of
the input format; (iii) the virtual 3D objects that reside in

1Open Natural Interaction – openni.org
2primesense.com/nite
3Open Source Computer Vision – code.opencv.org
4Open Graphics Library – opengl.org
5Open source Graphics Rendering Engine – ogre3d.org
6jmonkeyengine.com



Figure 1: 3D book manipulation.

Computer Vision and
User Tracking Libraries

NITE OpenNI OpenCV ModHel’X

HCI
Application

Model

3D Graphics
Rendering Engine

UDP

data
transfer

UDP

data
transfer

Figure 2: Architecture of the approach.

the graphical library can be integrated and reused easily in
different applications, since the behavior of these objects is
specified or customized by the application developer using
visual models.

The remainder of this article is structured as follows. In
Section 2 we introduce our HCI case study, relying on the
Kinect sensor and the OGRE graphical rendering engine.
Section 3 then presents ModHel’X, the environment we se-
lected for heterogenous modeling, and the adaptations that
were required to use it for our case study. Section 4 explains
how the case study has been modeled in ModHel’X, and mo-
tivates our design choices. Section 5 presents related work.
In Section 6 we discuss our proof-of-concept and present
avenues of future work, before concluding in Section 7.

2. CASE STUDY: BOOK MANIPULATION
As a case study, we consider a simple example of a gestural

HCI application to interact with 3D graphical objects on
the screen. The goal is to allow a user standing in front of
the screen to interact with virtual books by using his hands.
We envision the following application scenario. The user can
open a virtual 3D book displayed on the screen by swiping
his left hand from right to left. Conversely, by swiping his
left hand from left to right, he will close the book. Swiping
a hand is achieved by first closing the hand and then moving
it in the given direction. The user can also move the book
around in 3 dimensions while his right hand remains closed.
Figure 1 shows a screenshot of the application implementing
this scenario.

Depending on the scenario of use, the developer can eas-
ily customize the behavior of the HCI application and the
behavior of the graphical objects that are used through the
use of visual modeling:

• He can attach a specific interpretation to the hand
gestures. In the presented scenario, the left and right
hand act differently: the book can only be opened or
closed while the left hand is closed; the book can only
be moved while the right hand is closed.

• He can attach a different behavior to the same graphical
object (in our case: the book). In the presented sce-
nario, moving, opening and closing the book is allowed.
Other actions, like rotation, are disallowed.

Figure 2 depicts the global architecture of the HCI appli-
cation. Only the functional logic of the application (middle
part of the figure) is expressed as a heterogenous model in
ModHel’X. It sends data over UDP to a graphical engine
(right part, hand-coded in C++) to render 3D objects on the
screen, and it receives data over UDP from an input device
(left part, hand-coded in C++) to detect hand gestures. For
the former, we used the open source OGRE rendering engine

to specify the graphics of the application. For the latter,
we use Microsoft’s Kinect controller7. It detects the shape
and 3D position of a person in front of the screen through
the use of an infrared projector and an infrared camera. We
used NITE, a C++ development framework for the Kinect
to detect persons in front of the sensor and to track the 3D
position and movement of their skeleton in real time. For
our HCI application, we only use the position of each hand
(in 3 dimensions) as well as its status (open or closed). Since
the information of whether a hand is opened or closed was
not provided by the NITE framework, we hand-coded this
functionality ourselves in C++.

We now present the ModHel’X framework, before detailing
the heterogeneous model used in our HCI application.

3. HETEROGENEOUS MODELING WITH
MODHEL’X

ModHel’X [8, 3] is an experimental framework developed
at Supélec in order to test new ideas about the executable
semantics of heterogeneous models. There are two main tasks
to achieve in order to obtain a meaningful heterogeneous
model using model composition: (1) the precise definition
of the semantics of each modeling language; (2) the precise
definition of the semantic adaptation between parts of a
model that use different modeling languages. One method
for defining the semantics of different modeling languages
is to use a common meta-model to describe the structure
of models, and to attach semantics to this structure using
so-called models of computation (MoC).

A B

A B

MoC = FSM
A B

MoC = DE

Figure 3: Models of computation.

A MoC is a set of rules that define the nature of the
components of a model and how their behaviors are combined
to produce the behavior of the model. For instance, Figure 3
shows that two models can share the same structure (two
components A and B linked by two arrows) with different
semantics, i.e., different MoC: a finite state machine (FSM) or
two processes communicating through discrete events (DE).

7www.xbox.com/kinect



Heterogeneous model of a gesture-based interactive 3D application

Structure

DE

Sensing

moveLy
SDF

InterfaceBlock
cf. Fig. 5

Application Logic

TFSM

InterfaceBlock
cf. Fig. 6

Virtual Scene

TFSM

InterfaceBlock
cf. Fig. 7

3D
Rendering

moveRx

moveRy

moveLx

translX

translY

swipe

translX

translY

setAngle

Kinect
Client

API

3D Rendering
Server

API

Figure 4: Structure of the heterogenous model for the “Book manipulation” case study.

When interpreted by the FSM MoC, the model represents an
FSM with two states. When interpreted by the DE MoC, it
represents two processes that communicate through events.

ModHel’X allows one to describe the structure of het-
erogeneous models, to define MoCs for interpreting such
structures, and to define the semantic adaptation between
heterogeneous parts of a model. For this, ModHel’X relies on
a meta-model that defines the common abstract syntax for
all models, and on a generic execution engine that defines an
abstract semantics that is refined by MoCs into a concrete
semantics.

Figure 4, which shows the structure of the ModHel’X model
used for our case study, illustrates the different elements of
the abstract syntax of ModHel’X. A model is composed of
a structure (surrounded by a gray outline), which contains
blocks (the gray rectangles with rounded corners), and which
is interpreted according to a MoC (shown in a diamond-
shaped label). In this example, the model is interpreted
according to the DE MoC, and contains four blocks: Sensing,
Application Logic, Virtual Scene, and 3D Rendering. Blocks are
considered as black boxes that communicate only through
pins (the black circles). The structure of a model is defined
by setting relations (the arrows) between pins.

In ModHel’X, interpreting a model means executing the
behavior described by that model according to the semantics
of the MoC. An execution is a series of observations of the
model, each observation being computed through the sequen-
tial observation of the blocks of the model using a fixed-point
algorithm. The observation of one block is called an update.
Each MoC dictates the rules for scheduling the update of
the blocks of a model, for propagating values between blocks,
and for determining when the computation of the observation
of the model is complete.

Examples of MoCs currently available in ModHel’X include
Timed Finite State Machines (TFSM), Petri nets, Discrete
Events (DE) and Synchronous Data Flow (SDF). TFSM and
Petri Nets are well-known MoCs. DE and SDF work like
their implementations in Ptolemy II [4, 7]: in DE, blocks
are processes that exchange timestamped events that can
contain data; in SDF, blocks are data-flow operators that
consume and produce a fixed number of data samples on
their pins each time they are activated.

In ModHel’X, heterogeneity is handled through hierarchy.

A ModHel’X model can contain InterfaceBlocks, whose inter-
nal behavior is described by a ModHel’X model. The MoC
used by the inner model of an interface block can differ from
the MoC of the outer model to which the interface block
belongs. The InterfaceBlock acts as an adapter between the
two MoCs. For instance, in the detailed view of the Appli-
cation Logic block shown in Figure 6, the MoC of the outer
model is DE, and the MoC of the inner model is TFSM. The
dashed arrows between the pins of the interface block and the
pins of the inner model represent the semantic adaptation
between the two MoCs, which is realized by the interface
block. As shown in [3], three aspects can be considered in
this adaptation: data (which may not have the same form in
the inner and outer models), time (the notion of time and
the time scales may differ in the inner and outer models) and
control (the instants at which it is possible or necessary to
communicate with a block through its interface).

4. CASE STUDY REVISITED
This section details how we used ModHel’X to specify an

executable model of the case study that was introduced in
Section 2. A webpage presenting this model and videos of its
execution by interacting with a user through the Kinect is
available at wwwdi.supelec.fr/software/ModHelX/Kilix.

Figure 4 shows the overall structure of our gesture-based
interactive 3D application: the Sensing block receives data
from the Kinect and converts it into hand gesture events;
the Application Logic block interprets these hand gestures
and converts them into actions that are meaningful in the
context of an interactive 3D application; and the Virtual
Scene block represents graphical 3D objects (e.g., a book)
that interpret these actions, convert them into object-specific
behavior (such as opening or closing the book), and send
instructions to the 3D Rendering block that communicates
with the graphical rendering engine.

We have chosen the discrete events MoC (DE) for the
communication between the top-level blocks. Submodels
may use other MoCs. The Sensing model uses synchronous
data flow (SDF), the Application Logic and Virtual Scene
models use timed finite state machines (TFSM).

The internal model of the Sensing block is shown in Figure
5. It relies on data packets received from the Kinect device
at a fixed rate. It is a signal processing chain acting upon



Kinect
wrapper

rhc

rhx

rhy

lhc

lhx

lhy

x̄

∆t

−
×

SDF

Similar processing chain for the three other outputs

Sensing

moveRx

moveRy

moveLx

moveLy

Figure 5: Interface block and SDF model of the Sensing block to detect hand gestures.

Idle

ConfirmR

ConfirmL

SwipingR

SwipingL

mLL

mLR

mLR

mLL

after ∆t′

after ∆t′

mLR or after ∆t
/swipeL

mLL or after ∆t
/swipeR

TFSM

Application Logic

mLL

mLR

swipeL

swipeR

moveLx

moveRx
moveRy

swipe

translX
translY

> 0

< 0

−1

+1

Figure 6: Interface block and TFSM model for the Application Logic block.

sampled signals, therefore SDF is the most appropriate MoC
to use. A wrapper around the Kinect interface provides the
position (x, y coordinates)8 of each hand (left and right) and
its status (open or closed). This SDF model transforms the
absolute positions into relative movements such as moving
the left hand (resp. right hand) horizontally or vertically. For
each x and y component of each hand, it first averages the
coordinate to eliminate high-frequency fluctuations. Then
it calculates the relative moves by subtracting a delayed
coordinate from the current one. Finally, only movements
performed while the hand is closed are taken into account,
so we multiply the amplitude of the movements by the hand
status (0 stands for “open”; 1 stands for “closed”). On output,
we generate DE events only for the movements that have
a non-null amplitude. For this, we reuse the pre-existing
SDF/DE adapter, customized in order to generate DE events
only when non-null SDF tokens are produced. In the DE
model, these events are then passed to the Application Logic
block for further processing.

Figure 6 shows the Application Logic block containing the
main functional logic of the interactive application. Its inner
model uses the timed finite state machines (TFSM) MoC.
As we have shown in previous work [6], the use of state
machines provides a natural way to represent and implement
the application logic of interactive gesture-based applications.
The purpose of the application logic is to recognize some

8For brevity we did not process z coordinates.

application-specific gestures such as swiping to the left and
to the right, or moving graphical objects around. First, the
discrete events received from the Sensing block are converted
by the adapter into state machine events. For instance, when
the left hand moves along the x coordinate (incoming moveLx

event) with ∆x < 0 then an event called mLL (move left hand
to the left) is sent to the state machine. An mLR event is gen-
erated likewise. The state machine detects these elementary
movements and aggregates them into swiping movements
after they have been performed for a while. On output, the
state machine produces swipeL and swipeR messages that
are converted back into DE events by the interface block.

To achieve this, we had to extend the original DE/TFSM
adapter in two ways. First, we needed to be able to generate
FSM events based on conditions such as ∆x < 0, whereas
previously we could only discriminate between discrete val-
ues. This improvement paves the way for the support of
an expression language in ModHel’X. Second, some events
(e.g., moveRx and moveRy) just needed to be passed on by the
Application Logic. Instead of adding transitions to the state
machine, which would make it unnecessarily difficult to read
and maintain, we added the ability to connect output pins
directly to input pins in the interface block (the two dashed
arrows at the top of Fig. 6).

The state machine of Fig. 6 works as follows. When nothing
happens, it stays in the initial Idle state. As soon as an
mLL event is received (representing the movement of the



left hand to the left), a transition to the ConfirmL state is
fired. If during a short time interval (represented by ∆t′)
no movement in the opposite direction is detected, the left
hand movement is confirmed and a transition goes to the
SwipingL state. After a fixed time delay ∆t, or if the hand
moves to the right, the swipeL message is generated and the
state machine returns to the Idle state. The behavior for
the right hand is symmetrical (with a ConfirmR state and
a SwipingR state, an mLR event that triggers the transition
and a swipeR message that is generated).

Closed

Open

open
/angle160

close
/angle0

TFSM

Virtual Scene

open

close

angle160

angle0

swipe

translX
translY

setAngle

translX
translY

−1

+1

160

0

Figure 7: Interface block and TFSM model for the
Virtual Scene block.

The Virtual Scene block of Fig. 7 represents the virtual
3D object (the book) the user will interact with. This block
specifies the behavioral model of the interactions with the
virtual object, using the TFSM MoC. When the book is in the
Open state, and the close event is received (corresponding
to a positive swipe event received from the outer block), a
transition to the Closed state is triggered, and an angle0

event is generated to tell the graphical rendering engine to
set the angle between the two covers of the book to 0 degrees.
The rendering engine will respond to this by an animation
that closes the book. If the book is in the Closed state, we
have the opposite behavior. When an open event is received
(corresponding to a negative swipe), a transition to the Open

state is triggered, and an angle160 event is created to tell
the graphical rendering engine to open the book by setting
the cover to cover angle to 160 degrees. The translX and
translY events are not interpreted by the TFSM, but are
simply forwarded by the DE/TFSM adapter in a similar way
as for the Application Logic block.

Having presented this new approach of the modeling of
HCI applications, we will compare it in the next section to
other approaches before discussing its limitations.

5. RELATED WORK
In the field of modeling for HCI, our previous work [6] used

only Statecharts to model the gestural interaction with a 3D
user interface using the Kinect. We developed a simple frame-
work to represent and execute various user interactions such
as pointing, clicking or drag and drop, and also translating
or rotating graphical 3D objects. In the same field, Navarre
et. al. [9] used refined Petri nets to model the interaction
with a virtual chess game enhanced with a data glove, thus
allowing direct manipulation of chess pieces. They defined a
formalism called Interactive Cooperative Objects (ICO) [10]
based on Petri nets to specify, model and execute interactive
systems. The main difference between our current work and

the aforementioned references resides in the fact that we
now use heterogeneous modeling whereas a homogenous for-
malism was used previously. Heterogeneous modeling allows
us to use different modeling languages for different parts of
the application. For instance, we feel that processing raw
3D coordinates from the Kinect is better described using
data flow operators, and state machines are a better fit for
describing the behavior of the application.

Regarding the choice of ModHel’X as the heterogeneous
modeling environment, we could also have used Ptolemy II [7],
Metropolis[1] or the MATLAB/Simulink toolchain by The
MathWorks 9. However, MATLAB supports only a restricted
set of modeling languages, while Ptolemy and ModHel’X
provide support for the creation of new modeling languages.
This is an advantage because a modeling environment for
HCI applications should support various domain specific
modeling languages depending on the application domain and
on the properties that should be checked on the application.
The advantage of ModHel’X over Ptolemy II is that the
semantic adaptation between heterogenous parts of a model
is explicitly defined. In this case study, we saw that semantic
adaptation, which was initially thought of as a mechanism
for adapting between different modeling languages, can also
be used to adapt between different uses of a component in
various applications. For instance, the interface block used
to embed a book in the virtual scene not only adapts the
semantics of DE to the semantics of TFSM, it also maps
actions (swipe, translate) to reactions of the book (open,
close, move). This mechanism eases the reuse of components
by decoupling the description of their behaviors from the
events that trigger these behaviors.

6. DISCUSSION AND FUTURE WORK
Currently, the application handles only one book and one

user. The book is modeled as a state machine in a Mod-
Hel’X block. A real-scale application would require to deal
with a whole bookshelf and multiple simultaneous users, so
it would become tedious to add many identical ModHel’X
state machines and blocks to the overall model. To ease the
construction of such a model we would need some “syntac-
tic sugar” to instantiate an array of several nearly-identical
blocks. In this regard ModHel’X currently has another limi-
tation: models are static, i.e., their structure cannot change
at runtime; only their execution context evolves over time.
Handling a variable number of books and users would require
the ability to change the model at runtime. A possibility
would be to add support for ModHel’X blocks that behave
as classes instead of objects, and to model instances of those
classes as data tokens. This way, a TFSM model would rep-
resent the behavior of all books, and this behavior would be
applied to a particular book when a data token representing
this book would be put on an input pin of the block. On
output, the setAngle pin, for example, would hold a data
token identifying both the 3D object to update and the value
of the angle between its covers.

We are currently carrying out an extended case study
to compare the homogenous Petri net approach proposed
by ICO [9, 10] with the heterogenous approach presented
here. This will allow us to explore the added value of using
concurrency and dynamic instantiation for HCI applications.

In the present proof-of-concept we used dedicated models

9www.mathworks.com/products/simulink/



of computation (MoCs) for each part: for instance a MoC
for gesture recognition, a MoC for specifying library man-
agement tasks, a MoC for interfacing with the 3D rendering,
etc. In ModHel’X, a MoC and its associated library of blocks
corresponds to a domain-specific language. The use of very
specialized DSLs for specific tasks is an advantage for the de-
signer of an application, but it poses the problem of defining
and tooling these DSLs. Creating a MoC and a library of
blocks in ModHel’X requires some non trivial work. There-
fore, we are currently working on an approach for leveraging
the ModHel’X notion of MoC and meta-modeling techniques
to ease the definition of new DSLs by reusing models of com-
putation and libraries of domain-specific actions. By allowing
the designer to work with domain-specific concepts and by
reducing the semantic gap between the application domain
and the modeling tools, this approach will be beneficial to
the modeling of gesture-based 3D applications.

Finally, when developing interactive applications, an archi-
tectural and design model has to be chosen. In our case, we
have used a derivative version of the Arch architecture [2].
Thanks to this model, we are able to distinguish and repre-
sent each architectural component of our case study, such as
the step that involves the transformation of low-level events
to high-level actions, and the input-device independent step
which models the interaction with graphical 3D objects and
interprets the high-level actions.

7. CONCLUSIONS
In this paper we have successfully used the ModHel’X

modeling environment for developing a simple HCI applica-
tion for gesture-based user interaction. The proof-of-concept
application we developed served several purposes: (i) to il-
lustrate the feasibility of developing HCI applications in a
model-driven way, limiting the amount of code to be de-
veloped by the HCI programmer to the bare minimum; (ii)
to assess the usefulness of heterogeneous modeling for this
purpose, using different model components with different
models of computation; (iii) to identify the use of semantic
adaptation as a mechanism for reusing objects in different
application contexts; (iv) to overcome some of the limitations
of ModHel’X and suggest future improvements.

Because we could directly simulate our case study in Mod-
Hel’X, we were able to develop our HCI application using
rapid prototyping. It only took us 3 full days to realize the
application. In addition, our modular architecture made
it significantly easier to modify the application along two
dimensions: (i) to change the gestural input device (Kinect
in our case) or the graphical output rendering engine (OGRE
in our case), only one single component needs to be replaced;
(ii) to change the application-specific behavior or the object-
specific (books in our case) behavior, again only one single
component needs to be replaced. Ultimately, it should be
possible to come up with a reusable library of graphical ob-
ject models, each having their own specific behavior that can
be customized by the user when integrating them into the
HCI application.

8. ACKNOWLEDGMENTS
We thank Hans Vangheluwe and Pieter Mosterman for

bringing us together, through the organization of the CAM-
PaM 2012 workshop on Multi-Paradigm Modeling.

This research has been partially supported by (i) the F.R.S.–
FNRS through FRFC project 2.4515.09 “Research Center on
Software Adaptability”; (ii) research project AUWB-08/12-
UMH “Model-Driven Software Evolution”, an Action de
Recherche Concertée financed by the Ministère de la Com-
munauté française - Direction générale de l’Enseignement
non obligatoire et de la Recherche scientifique, Belgium. The
first author is financed by a FRIA scholarship.

9. REFERENCES
[1] F. Balarin, L. Lavagno, C. Passerone, A. L.

Sangiovanni-Vincentelli, M. Sgroi, and Y. Watanabe.
Modeling and designing heterogeneous systems. In
J. Cortadella, A. Yakovlev, and G. Rozenberg, editors,
Concurrency and Hardware Design, volume 2549 of
Lecture Notes in Computer Science, pages 228–273.
Springer, 2002.

[2] L. Bass, R. Pellegrino, S. Reed, S. Sheppard, and
M. Szczur. The arch model : Seeheim revisited. In CHI
91 User Interface Developpers Workshop, 1991.

[3] F. Boulanger, C. Hardebolle, C. Jacquet, and
D. Marcadet. Semantic adaptation for models of
computation. In Proc. Int’l Conf. Application of
Concurrency to System Design (ACSD), pages 153–162.
IEEE, 2011.

[4] C. Brooks, E. A. Lee, X. Liu, S. Neuendorffer, Y. Zhao,
and H. Zheng. Heterogeneous concurrent modeling and
design in Java (volume 3: Ptolemy II domains).
Technical Report UCB/EECS-2008-30, University of
California, Berkeley, 2008.

[5] F. P. Brooks. The Mythical Man-Month: Essays on
Software Engineering. Addison-Wesley, 20th
anniversary edition, 1995.

[6] R. Deshayes and T. Mens. Statechart modelling of
interactive gesture-based applications. In Int’l
Workshop on Combining Design and Engineering of
Interactive Systems through Models and Tools
(ComDeisMoto), satellite event of INTERACT 2011,
2011.

[7] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu,
J. Ludvig, S. Neuendorffer, S. R. Sachs, and Y. Xiong.
Taming heterogeneity - the Ptolemy approach. Proc.
IEEE, 91(1):127–144, 2003.

[8] C. Hardebolle and F. Boulanger. Exploring
multi-paradigm modeling techniques. SIMULATION:
Transactions of The Society for Modeling and
Simulation International, 85(11/12):688–708,
November/December 2009.

[9] D. Navarre, P. A. Palanque, R. Bastide, A. Schyn,
M. Winckler, L. P. Nedel, and C. M. D. S. Freitas. A
formal description of multimodal interaction techniques
for immersive virtual reality applications. In M. F.
Costabile and F. Paternò, editors, INTERACT, volume
3585 of Lecture Notes in Computer Science, pages
170–183. Springer, 2005.

[10] D. Navarre, P. A. Palanque, J.-F. Ladry, and
E. Barboni. Icos: A model-based user interface
description technique dedicated to interactive systems
addressing usability, reliability and scalability. ACM
Trans. Comput.-Hum. Interact., 16(4), 2009.


