
An Architecture Description Language
for Verification in Component-based Software

Ahcene Bouzoualegh, Dominique Marcadet, Frédéric Boulanger and Christophe Jacquet
SUPELEC, Department of Computer Science, France

<first_name>.<last_name>@supelec.fr

Abstract

In the context of component-based design, we

propose ADLV1, an architecture description language
based on IDL3, which allows the specification of
properties that should hold on the system. The joint
description of both the structure of the application and
the properties it should satisfy allows us to derive the
properties that should be formally checked on the
control component of the system. We focus here on the
ADLV language and tool and on code generation for
the CCM platform from ADLV descriptions. Code
generation must preserve the semantics of special
components that are in charge of interfacing the
control and the processing parts of the application.

1. Introduction

An advantage of formal methods, in particular
specification and programming languages with formal
semantics, is to allow for automatic validation
techniques which significantly reduce the validation
phase of embedded systems. This is a key point in the
success of synchronous languages such as Esterel [2].

In the context of component-based software
engineering, Architecture Description Languages
(ADL) are used to define an application as a set of
interconnected components. The difficulty to apply
model checking techniques with existing ADL is that
model checkers work better with events or boolean
values while the application designer desires to express
the properties to be verified on the signals of the
application, which often have more complex data
types. The purpose of this paper is to describe a new
ADL that integrates the classical component-based
application description with properties to be verified by
model checking. Using this language, called ADLV,
the designer can express the properties to check using

1 This work has been performed in the context of the Usine Logicielle project
(www.usine-logicielle.org) and is partially financed by the System@tic Paris-
Région Competitiveness Cluster (www.systematic-paris-region.org).

application inputs and outputs, whatever their data
type, and independently of the model checking tool.

Section 2 is a brief overview of software
architecture and CCM. Model checking is introduced
in Section 3. Section 4 introduces the proposed ADL
for verification and the associated tool. Before
concluding, we present a case study in Section 5.

2. Overview of Software Architecture

Software architecture languages enable the precise
definition of the overall system structure [6 and 10] as
a set of interconnected components. There are several
definitions of the term component, the most common
being a software module with well defined interactions
points called ports [5 and 8]. The architecture shows
the intended correspondence between the system
requirements and the elements of the constructed
system. An architect must first define the contracts of
the components required by the application, and then
through what interfaces two components interact.

The developers of components construct their
implementations from their definitions. Then, the
integrators create the relationships between the
components identified in the architecture and the
implementations produced by the developers. Finally,
the deployment of a component-based application
corresponds to the instantiation of the components,
followed by the initial configuration and the
interconnection of these instances. In order to model
the interactions between components, software
architectural elements called connectors are
introduced, therefore a software system is defined in
terms of components and connectors [12].

In the Common Object Request Broker Architecture
(CORBA) specification [9], “component” is a basic
meta-type. To ease and improve the quality of the
application production process, the OMG has defined
the CORBA Component Model (CCM), which is an
industrial model for distributed business components,

in the context of heterogeneous programming
languages [11].

This component model uses ports to represent
connection points. These ports, as well as the
component types, are defined with the Interface
Definition Language (IDL), an implementation neutral
language. There are two categories of ports: ports used
for communication with defined CORBA interfaces
and ports used to exchange events. An extension of
IDL allows for dataflow ports.

3. Model Checking for Software Systems

Model checking is a systematic way for checking
whether all behaviours of a system model fulfil their
specifications [7]. Formal property verification consists
in proving properties by combining properties formally
defined or already proved.

Embedded software systems are often critical and
thus require a high level of reliability and quality. This
leads to lengthy and costly test phases. To ensure the
reliability of such complex systems, verification
methodologies become necessary in the process; one
tries to construct a formal proof that shows that all
executions of the program satisfy the desired
properties. To perform verification, we need a
modeling language to describe software architecture, a
specification language for the formulation of properties
to be checked, and a checking algorithm [4]. Many
algorithms are based on graph exploration where the
nodes are the states of the system and the edges are
labeled by events that trigger the changes of state.
Some recent ADLs can represent a system’s structure
and behavior together with its dynamic changes and
evolutions [13].

4. Architecture Description Language for
Verification (ADLV)

4.1. Overview

We propose ADLV, which tries to integrate both the
scopes of ADLs and of model checking. It is designed
as an IDL extension. In our methodology, we impose
that an application has only one control component,
and may have several processing or internal
components. Processing components communicate
through data flows and are activated and intercon-
nected under the supervision of the control component
which consumes and produces only pure events.
Processing and control components are called external
components because their behavior is specified using
other tools. Internal components are small components
whose behavior is specified in ADLV, and which are

used to produce events from values and to create
dynamic connections. The benefit of this explicit
separation between processing and control is that it
makes the control task explicit and verifiable.

The ADLV tool that we developed is used both to
produce the application targeted at an OMG’s
Lightweight CCM (LwCCM) [3] implementation and
to translate the application properties into control
observers. The goal is to rely only on the description of
the application structure and on the specifications of
the internal components to transform the global
properties to be proved into properties expressed in a
form recognized by the checking tool used for the
control specification.

4.2. Principles of Property Verification

The ADLV language allows the designer to specify
properties that must be satisfied by the system. These
properties must be expressed in linear temporal logic.
Only the subset of canonical safety formulae is
considered [1]. Such a formula specifies that some past
temporal logic expression must always (or never) be
true, and thus allows the designer to express the
desired behaviour of the system. To ease the designer's
task, safety properties may include conditions on
dataflow values: this allows him/her to use a
vocabulary 1) that he/she is familiar with and 2) that is
well-suited for expressing general system properties.

We have proposed a method [14] that relies on the
ADLV description of the application, mainly the
specifications of the internal components, to transform
conditions on dataflow values into temporal logic
formulae involving only controller events. We are thus
able to build a formula, called intermediate form,
containing only events. Next, we translate this
intermediate form into an observer in the target
language of the controller. Finally, we can use the
language-specific formal verification tools to prove
that the controller, and thus the application, satisfies
(or does not satisfy) the safety properties. If the
properties are not satisfied, these tools can provide a
counterexample.

4.3. Introduction to the ADLV Language

The control, processing, internal and
tool specific new keywords have been added to the
IDL syntax. They are used to distinguish the different
component kinds and to specify the tools used to create
the implementation code of the external components.
The ADLV description of components follows this
grammar:

control component <identifier> {

 tool <identifier>;
 <control_component_body>
};
processing component <identifier> {
 tool <identifier>;
 <processing_component_body>
};
internal component <identifier> {
 <internal_component_body>
};

The other syntactic aspects of external component
bodies conform to the standard IDL syntax
(consumes, publishes, sink and source). The
bodies of internal components may specify which
event to produce when some boolean expression,
referring to dataflow values, becomes true; it may also
define a dataflow value to store upon receipt of an
event. An application is a kind of component with its
own ports. It is defined by its component instances and
by the connectors, which may be modified upon
reception of an event, between component ports.
Finally, extensions to the IDL language have been
made to allow for expressing the properties to be
verified.

4.4. Architecture of the ADLV Tool

The ADLV tool (see figure 1) is a set of Eclipse
plugins. An abstract model of our language has been
made and promoted as an eCore model to benefit from
the Eclipse Modelling Framework services. A parser

for the ADLV textual syntax is used to populate an
ADLV model; such a model could also be obtained
using an UML2 profile and a model transformation.
The ADLV model is used by two tools: one is
responsible for the generation of the observers in the
controller language, the other is used for the generation
of all the files needed for the chosen LwCCM
implementation. These include the project build files,
the standard CCM IDL files, the C++ implementations
of the internal components, the C++ glue between the
code generated by the tools used to design the control
and processing components and the code expected by
the containers of the LwCCM implementation, and
finally the deployment XML files.

5. A Case Study in ADLV

Our case study (see figure 2) is a classical example
of a car cruise control system; its main purpose is to
maintain speed at a given value selected by the driver,
which involves an automatic control system. The
application has been described in ADLV and a
simplified car simulator with a graphical interface has
been created to demonstrate the generated application.

The cruise control system receives two events (start
or stop the regulation) and three data flows (positions
of the brakes and the accelerator pedal, current speed).
The last one is used by three components: the
duplication of this input value is automatically
generated by the ADLV tool in the projection to
LwCCM phase. The cruise regulator provides a
command to the injection system that is either directly
the one generated by the accelerator pedal, or the one
calculated by an automatic control component to
maintain an exact speed value when regulation is
active.

The component in charge of the regulation, an
external processing component in ADLV terminology,
has been designed with Simulink while the other
external component, the controller, is implemented in
Esterel.

There are three internal components: two of them
produce events from data flows (Brakes Check and
Speed Check), the third is needed to provide the
processing component with the target speed as a
dataflow value using the current speed as input and an
event from the controller as an order to memorize it.
Finally, there is a dynamic connector driven by the
controller to select the right output.

The designer of this system can write application
properties to be verified such as: 1) regulation is
deactivated when the driver depresses the brakes pedal,
2) the regulator is placed in standby mode when the
driver depresses the accelerator, until the accelerator is

released (provided that regulation was initially active),
3) the activation of regulation is prohibited if the speed
is not in an allowed range, etc. These properties are

converted into Esterel observers and checked against
the controller implementation, which has been realized
independently of the whole system architecture (only
its interface is imposed).

6. Conclusion

In this paper, we have presented our efforts to
design an Application Description Language that can
be used both for deploying and for verifying the
application.

One of the goals of ADLV is to use the structure of
the application to transform global properties on the
application into properties on the control that, in turn,
can be transformed into observers. These observers are
recognized by the checking tools associated with the
language used to specify the control.

 To make this approach successful, we have limited
the design choices of the developers: an application is
made of only one control component which uses only
pure events, of several processing components which
consume and produce data flows, and of internal
components which compute events from data flows
and control the application in response to the events
produced by the controller. As a counterpart to these
restrictions, we provide a tool for generating all the
needed files to build and deploy the application on a
LwCCM execution environment, including the glue
needed to integrate the code generated by the tools
used for the external components.

7. References

[1] E.Y. Chang, Z. Manna and A. Pnueli, “Characterization
of Temporal Property Classes”, Proceedings of the 19th
International Colloquium on Automata, Languages and
Programming, Lecture Notes In Computer Science, Vol. 623,
pp. 474–486. Springer-Verlag.

[2] G. Berry and G. Gonthier, “The ESTEREL Synchronous
Programming Language: Design, Semantics, Implemen-
tation”, Science of Computer Programming, 19(2):87--152,
1992.

[3] OMG: “Lightweight CORBA Component Model Revised
Submission”, Object Management Group, Inc. May 2003,
realtime/03-05-05

[4] S. Merz, “Model Checking: A Tutorial Overview”,
Proceedings of the 4th Summer School on Modeling and
Verification of Parallel Processes, volume 2067 of Lectures
Notes in Computer Science, 2001, pp. 3-38. Springer-Verlag.

[5] C. Szyperski, “Component Software”, Addison-Wesley,
2nd edition, 2002.

[6] M. Shaw, R. DeLine, D. Klein, T. Ross, D. Toung, and G.
Zelesnik, “Abstraction for Software Architecture and Tools
to Support Them”, IEEE Transactions on Software Enginee-
ring, April 1995.

[7] E. M. Clarke, J. Wing and Al, “Formal Methods: State of
the Art and Futures Directions”, ACM Computing Surveys,
1999, pp. 626-643.

[8] I. Crnkovic, M. Larsson, “Building Reliable Component-
Based Software Systems”, Artech House, 2000.

[9] OMG, Common Object Request Broker Architecture
(CORBA/IIOP), formal/2008-01-08.

[10] IEEE Architecture Working Group, “IEEE Recom-
mended Practice for Architectural Description of Software-
intensive Systems”, Report IEEE Std 1471-2000

[11] OMG, “CORBA Component Model”, formal/2006-04-
01.

[12] N. Medvidovic and R. N. Taylor, “A Classification and
Comparison Framework for Software Architecture Descrip-
tion Languages”, IEEE Transactions on Software Enginee-
ring, Vol 26, no1, Jan. 2000, pp. 70-93.

[13] R. Mateescu. “Model Checking for Software Archi-
tectures”, EWSA 2004, 2004, pp. 219-224.

[14] C. Jacquet, F. Boulanger, D. Marcadet, “From Data to
Events: Checking Properties on the Control of a System”, in
the Sixth ACM-IEEE International Conference on Formal
Methods and Models for Codesign (MEMOCODE'2008),
June 2008. Accepted for publication, to appear.

accelerator

Target Speed

current_speed

target_speed

set_target

Controller

regulation_on
regulation_off
brakes_pushed
brakes_released
speed_correct

speed_incorrect

stop_speed_regulation
set_target

start_speed_regulation

Brakes Check

brakes_on
brakes_released

brakes_pushed

Speed Check

current_speed
speed_incorrect

speed_correct br
ak

es
_o

n
cu

rr
en

t_
sp

ee
d

regulation_on

regulation_off

th
ro

ttl
e

Regulator

target_speed
regulated_cmd

current_speed

Figure 2. Architecture of the cruise controller

